diff --git a/ARIMA/.ipynb_checkpoints/ARIMA_V2-checkpoint.ipynb b/ARIMA/.ipynb_checkpoints/ARIMA_V2-checkpoint.ipynb new file mode 100644 index 0000000..ff47f3a --- /dev/null +++ b/ARIMA/.ipynb_checkpoints/ARIMA_V2-checkpoint.ipynb @@ -0,0 +1,350 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Intial code\n", + "for reference purposes" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# import pandas as pd\n", + "# import numpy as np\n", + "# from sklearn.metrics import mean_squared_error\n", + "# from sklearn.preprocessing import StandardScaler\n", + "# from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "# from statsmodels.tools.sm_exceptions import ConvergenceWarning\n", + "# import warnings\n", + "\n", + "# # Ignore convergence warnings\n", + "# warnings.simplefilter(\"ignore\")\n", + "\n", + "# # Load dataset with parsed dates\n", + "# data = pd.read_csv('../Data/SBI Train data.csv', parse_dates=['Date'], dayfirst=True)\n", + "\n", + "# # Set the index to the Date column\n", + "# data.set_index('Date', inplace=True)\n", + "# # data = data.asfreq('D')\n", + "# # Feature Engineering: Add day of week and month\n", + "# data['day_of_week'] = data.index.dayofweek\n", + "# data['month'] = data.index.month\n", + "\n", + "# # Add lagged value of the Close price and moving averages\n", + "# data['lagged_close'] = data['Close'].shift(1) \n", + "# data['moving_avg_3'] = data['Close'].rolling(window=3).mean()\n", + "# data['moving_avg_7'] = data['Close'].rolling(window=7).mean() # New: 7-day moving average for long-term trend\n", + "\n", + "# # Add Volume as a feature (scaling might help)\n", + "# data['volume'] = data['Volume']\n", + "\n", + "# # Drop rows with NaN values\n", + "# data.dropna(inplace=True)\n", + "\n", + "# # Standardize the features (important for scaling)\n", + "# scaler = StandardScaler()\n", + "# exog_features = ['day_of_week', 'month', 'lagged_close', 'moving_avg_3', 'moving_avg_7', 'volume']\n", + "# data[exog_features] = scaler.fit_transform(data[exog_features])\n", + "\n", + "# # Split the data into training and testing sets\n", + "# train_size = int(len(data) * 0.8)\n", + "# train, test = data.iloc[:train_size], data.iloc[train_size:]\n", + "\n", + "# # Tune SARIMAX hyperparameters (ARIMA order (p, d, q))\n", + "# order = (2, 1, 2) # Consider using AIC/BIC for finding optimal order\n", + "# seasonal_order = (1, 1, 1, 12) # Adding seasonality with monthly frequency\n", + "\n", + "# # Fit the SARIMAX model\n", + "# try:\n", + "# model = SARIMAX(train['Close'], \n", + "# exog=train[exog_features],\n", + "# order=order,\n", + "# seasonal_order=seasonal_order)\n", + "# model_fit = model.fit(disp=False)\n", + "# except ConvergenceWarning as e:\n", + "# print(f\"Convergence warning: {e}\")\n", + "# except Exception as e:\n", + "# print(f\"Error: {e}\")\n", + "\n", + "# # Forecasting\n", + "# forecast = model_fit.forecast(steps=len(test), exog=test[exog_features])\n", + "\n", + "# # Calculate RMSE for forecast\n", + "# rmse_arimax = np.sqrt(mean_squared_error(test['Close'], forecast))\n", + "# print(f\"Improved ARIMAX Model RMSE: {rmse_arimax}\")\n", + "\n", + "# test_prices = [i for i in test['Close']]\n", + "# # Check residuals diagnostics (optional)\n", + "# residuals = test_prices - forecast\n", + "# print(\"Mean of residuals:\", residuals.mean())\n", + "# print(\"Standard deviation of residuals:\", residuals.std())\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### immporting necessary libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: kaggle in d:\\anaconda\\lib\\site-packages (1.6.17)\n", + "Requirement already satisfied: six>=1.10 in d:\\anaconda\\lib\\site-packages (from kaggle) (1.16.0)\n", + "Requirement already satisfied: certifi>=2023.7.22 in d:\\anaconda\\lib\\site-packages (from kaggle) (2024.8.30)\n", + "Requirement already satisfied: python-dateutil in d:\\anaconda\\lib\\site-packages (from kaggle) (2.9.0.post0)\n", + "Requirement already satisfied: requests in d:\\anaconda\\lib\\site-packages (from kaggle) (2.32.2)\n", + "Requirement already satisfied: tqdm in d:\\anaconda\\lib\\site-packages (from kaggle) (4.66.4)\n", + "Requirement already satisfied: python-slugify in d:\\anaconda\\lib\\site-packages (from kaggle) (5.0.2)\n", + "Requirement already satisfied: urllib3 in d:\\anaconda\\lib\\site-packages (from kaggle) (2.2.2)\n", + "Requirement already satisfied: bleach in d:\\anaconda\\lib\\site-packages (from kaggle) (4.1.0)\n", + "Requirement already satisfied: packaging in d:\\anaconda\\lib\\site-packages (from bleach->kaggle) (23.2)\n", + "Requirement already satisfied: webencodings in d:\\anaconda\\lib\\site-packages (from bleach->kaggle) (0.5.1)\n", + "Requirement already satisfied: text-unidecode>=1.3 in d:\\anaconda\\lib\\site-packages (from python-slugify->kaggle) (1.3)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in d:\\anaconda\\lib\\site-packages (from requests->kaggle) (2.0.4)\n", + "Requirement already satisfied: idna<4,>=2.5 in d:\\anaconda\\lib\\site-packages (from requests->kaggle) (3.7)\n", + "Requirement already satisfied: colorama in c:\\users\\shristi\\appdata\\roaming\\python\\python312\\site-packages (from tqdm->kaggle) (0.4.6)\n" + ] + } + ], + "source": [ + "!pip install kaggle\n", + "import os\n", + "import pandas as pd\n", + "import numpy as np\n", + "import pickle\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.preprocessing import StandardScaler\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from statsmodels.tools.sm_exceptions import ConvergenceWarning\n", + "import warnings" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Udating features to dataset for proper time-series analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Ignore convergence warnings\n", + "warnings.simplefilter(\"ignore\", ConvergenceWarning)\n", + "\n", + "# Load training dataset with parsed dates\n", + "train_data = pd.read_csv('../Data/SBI Train data.csv', parse_dates=['Date'], dayfirst=True)\n", + "\n", + "# Set the index to the Date column\n", + "train_data.index = pd.DatetimeIndex(train_data.index).to_period('M')\n", + "\n", + "# Feature Engineering: Add day of week and month\n", + "train_data['day_of_week'] = train_data.index.dayofweek\n", + "train_data['month'] = train_data.index.month\n", + "\n", + "# Add lagged value of the Close price and moving averages\n", + "train_data['lagged_close'] = train_data['Close'].shift(1)\n", + "train_data['moving_avg_3'] = train_data['Close'].rolling(window=3).mean()\n", + "train_data['moving_avg_7'] = train_data['Close'].rolling(window=7).mean()\n", + "\n", + "# Add Volume as a feature (scaling might help)\n", + "train_data['volume'] = train_data['Volume']\n", + "\n", + "# Drop rows with NaN values after applying the rolling window and lagging\n", + "train_data.dropna(inplace=True)\n", + "\n", + "# Standardize the features\n", + "scaler = StandardScaler()\n", + "exog_features = ['day_of_week', 'month', 'lagged_close', 'moving_avg_3', 'moving_avg_7', 'volume']\n", + "train_data[exog_features] = scaler.fit_transform(train_data[exog_features])\n", + "\n", + "# Split the data into training and testing sets\n", + "train_size = int(len(train_data) * 0.8)\n", + "train, validation = train_data.iloc[:train_size], train_data.iloc[train_size:]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training and savinng model" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model and scaler saved successfully.\n" + ] + } + ], + "source": [ + "# Train the SARIMAX model\n", + "order = (2, 1, 2)\n", + "seasonal_order = (1, 1, 1, 12)\n", + "\n", + "model = SARIMAX(train['Close'], exog=train[exog_features], order=order, seasonal_order=seasonal_order,enforce_invertibility=False)\n", + "model_fit = model.fit(disp=False)\n", + "\n", + "#insert your folder name where you want the dataset to be downloaded instead of .kaggle\n", + "os.system('kaggle datasets download -d shristirwt/sarimax-model -p/.kaggle')\n", + "os.system('kaggle datasets download -d shristirwt/scaler-model -p/.kaggle')\n", + "\n", + "# Save the model to a file using pickle\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\sarimax_model.pkl', 'wb') as f:\n", + " pickle.dump(model_fit, f)\n", + "\n", + "# Optionally save the scaler as well\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\scaler.pkl', 'wb') as f:\n", + " pickle.dump(scaler, f)\n", + "\n", + "print(\"Model and scaler saved successfully.\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Loading saved model" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the model and scaler from the files\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\sarimax_model.pkl', 'rb') as f:\n", + " loaded_model = pickle.load(f)\n", + "\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\scaler.pkl', 'rb') as f:\n", + " loaded_scaler = pickle.load(f)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Loading and processing Test data" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the test dataset\n", + "test_data = pd.read_csv('../Data/SBI Test data.csv', parse_dates=['Date'], dayfirst=True)\n", + "\n", + "# Set the index to the Date column\n", + "test_data.set_index('Date', inplace=True)\n", + "\n", + "# Apply the same feature engineering on the test data\n", + "test_data['day_of_week'] = test_data.index.dayofweek\n", + "test_data['month'] = test_data.index.month\n", + "test_data['lagged_close'] = test_data['Close'].shift(1)\n", + "test_data['moving_avg_3'] = test_data['Close'].rolling(window=3).mean()\n", + "test_data['moving_avg_7'] = test_data['Close'].rolling(window=7).mean()\n", + "\n", + "# Add Volume as a feature\n", + "test_data['volume'] = test_data['Volume']\n", + "\n", + "# Drop rows with NaN values\n", + "test_data.dropna(inplace=True)\n", + "\n", + "# Standardize the features in the test dataset using the loaded scaler\n", + "test_data[exog_features] = loaded_scaler.transform(test_data[exog_features])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predicting share prices using model" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test Data RMSE: 4.883649507349637\n", + "Mean of residuals: 0.06489726947015648\n", + "Standard deviation of residuals: 4.8849520783077764\n" + ] + } + ], + "source": [ + "# Forecasting on the test data using the loaded model\n", + "forecast_test = loaded_model.forecast(steps=len(test_data), exog=test_data[exog_features])\n", + "\n", + "# Calculate RMSE for forecast\n", + "rmse_test = np.sqrt(mean_squared_error(test_data['Close'], forecast_test))\n", + "print(f\"Test Data RMSE: {rmse_test}\")\n", + "\n", + "# Check residuals diagnostics (optional)\n", + "test_prices = test_data['Close'].values\n", + "residuals_test = test_prices - forecast_test\n", + "print(\"Mean of residuals:\", residuals_test.mean())\n", + "print(\"Standard deviation of residuals:\", residuals_test.std())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/ARIMA/ARIMA_V2.ipynb b/ARIMA/ARIMA_V2.ipynb index bd5fe49..ff47f3a 100644 --- a/ARIMA/ARIMA_V2.ipynb +++ b/ARIMA/ARIMA_V2.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -95,10 +95,34 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: kaggle in d:\\anaconda\\lib\\site-packages (1.6.17)\n", + "Requirement already satisfied: six>=1.10 in d:\\anaconda\\lib\\site-packages (from kaggle) (1.16.0)\n", + "Requirement already satisfied: certifi>=2023.7.22 in d:\\anaconda\\lib\\site-packages (from kaggle) (2024.8.30)\n", + "Requirement already satisfied: python-dateutil in d:\\anaconda\\lib\\site-packages (from kaggle) (2.9.0.post0)\n", + "Requirement already satisfied: requests in d:\\anaconda\\lib\\site-packages (from kaggle) (2.32.2)\n", + "Requirement already satisfied: tqdm in d:\\anaconda\\lib\\site-packages (from kaggle) (4.66.4)\n", + "Requirement already satisfied: python-slugify in d:\\anaconda\\lib\\site-packages (from kaggle) (5.0.2)\n", + "Requirement already satisfied: urllib3 in d:\\anaconda\\lib\\site-packages (from kaggle) (2.2.2)\n", + "Requirement already satisfied: bleach in d:\\anaconda\\lib\\site-packages (from kaggle) (4.1.0)\n", + "Requirement already satisfied: packaging in d:\\anaconda\\lib\\site-packages (from bleach->kaggle) (23.2)\n", + "Requirement already satisfied: webencodings in d:\\anaconda\\lib\\site-packages (from bleach->kaggle) (0.5.1)\n", + "Requirement already satisfied: text-unidecode>=1.3 in d:\\anaconda\\lib\\site-packages (from python-slugify->kaggle) (1.3)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in d:\\anaconda\\lib\\site-packages (from requests->kaggle) (2.0.4)\n", + "Requirement already satisfied: idna<4,>=2.5 in d:\\anaconda\\lib\\site-packages (from requests->kaggle) (3.7)\n", + "Requirement already satisfied: colorama in c:\\users\\shristi\\appdata\\roaming\\python\\python312\\site-packages (from tqdm->kaggle) (0.4.6)\n" + ] + } + ], "source": [ + "!pip install kaggle\n", + "import os\n", "import pandas as pd\n", "import numpy as np\n", "import pickle\n", @@ -118,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -130,7 +154,7 @@ "train_data = pd.read_csv('../Data/SBI Train data.csv', parse_dates=['Date'], dayfirst=True)\n", "\n", "# Set the index to the Date column\n", - "train_data.set_index('Date', inplace=True)\n", + "train_data.index = pd.DatetimeIndex(train_data.index).to_period('M')\n", "\n", "# Feature Engineering: Add day of week and month\n", "train_data['day_of_week'] = train_data.index.dayofweek\n", @@ -166,21 +190,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 11, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\agraw\\AppData\\Roaming\\Python\\Python311\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.\n", - " self._init_dates(dates, freq)\n", - "C:\\Users\\agraw\\AppData\\Roaming\\Python\\Python311\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.\n", - " self._init_dates(dates, freq)\n", - "C:\\Users\\agraw\\AppData\\Roaming\\Python\\Python311\\site-packages\\statsmodels\\tsa\\statespace\\sarimax.py:978: UserWarning: Non-invertible starting MA parameters found. Using zeros as starting parameters.\n", - " warn('Non-invertible starting MA parameters found.'\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -194,15 +206,19 @@ "order = (2, 1, 2)\n", "seasonal_order = (1, 1, 1, 12)\n", "\n", - "model = SARIMAX(train['Close'], exog=train[exog_features], order=order, seasonal_order=seasonal_order)\n", + "model = SARIMAX(train['Close'], exog=train[exog_features], order=order, seasonal_order=seasonal_order,enforce_invertibility=False)\n", "model_fit = model.fit(disp=False)\n", "\n", + "#insert your folder name where you want the dataset to be downloaded instead of .kaggle\n", + "os.system('kaggle datasets download -d shristirwt/sarimax-model -p/.kaggle')\n", + "os.system('kaggle datasets download -d shristirwt/scaler-model -p/.kaggle')\n", + "\n", "# Save the model to a file using pickle\n", - "with open('sarimax_model.pkl', 'wb') as f:\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\sarimax_model.pkl', 'wb') as f:\n", " pickle.dump(model_fit, f)\n", "\n", "# Optionally save the scaler as well\n", - "with open('scaler.pkl', 'wb') as f:\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\scaler.pkl', 'wb') as f:\n", " pickle.dump(scaler, f)\n", "\n", "print(\"Model and scaler saved successfully.\")\n" @@ -217,15 +233,15 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# Load the model and scaler from the files\n", - "with open('sarimax_model.pkl', 'rb') as f:\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\sarimax_model.pkl', 'rb') as f:\n", " loaded_model = pickle.load(f)\n", "\n", - "with open('scaler.pkl', 'rb') as f:\n", + "with open(r'C:\\Users\\SHRISTI\\.kaggle\\scaler.pkl', 'rb') as f:\n", " loaded_scaler = pickle.load(f)\n" ] }, @@ -238,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -274,26 +290,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 20, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\agraw\\AppData\\Roaming\\Python\\Python311\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.\n", - " return get_prediction_index(\n", - "C:\\Users\\agraw\\AppData\\Roaming\\Python\\Python311\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.\n", - " return get_prediction_index(\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "Test Data RMSE: 4.673693537736142\n", - "Mean of residuals: 0.311316834051805\n", - "Standard deviation of residuals: 4.664969245987366\n" + "Test Data RMSE: 4.883649507349637\n", + "Mean of residuals: 0.06489726947015648\n", + "Standard deviation of residuals: 4.8849520783077764\n" ] } ], @@ -311,11 +317,18 @@ "print(\"Mean of residuals:\", residuals_test.mean())\n", "print(\"Standard deviation of residuals:\", residuals_test.std())" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -329,9 +342,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.12.4" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 }