forked from roshanprabhakar/digital-puppetry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera.js
752 lines (621 loc) · 23 KB
/
camera.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as posenet_module from '@tensorflow-models/posenet';
import * as facemesh_module from '@tensorflow-models/facemesh';
import * as tf from '@tensorflow/tfjs';
import * as paper from 'paper';
import dat from 'dat.gui';
import Stats from 'stats.js';
import 'babel-polyfill';
import {
drawKeypoints,
drawPoint,
drawSkeleton,
isMobile,
toggleLoadingUI,
setStatusText,
} from './utils/demoUtils';
import {SVGUtils} from './utils/svgUtils';
import {PoseIllustration} from './illustrationGen/illustration';
import {Skeleton, facePartName2Index} from './illustrationGen/skeleton';
import {FileUtils} from './utils/fileUtils';
import * as girlSVG from './resources/illustration/girl.svg';
import * as boySVG from './resources/illustration/boy.svg';
import * as abstractSVG from './resources/illustration/abstract.svg';
import * as blathersSVG from './resources/illustration/blathers.svg';
import * as tomNookSVG from './resources/illustration/tom-nook.svg';
// signaling server
const HOST = 'wss://vast-earth-73765.herokuapp.com/';
// Camera stream video element
let video;
let videoWidth = 500;
let videoHeight = 500;
// Canvas
let faceDetection = null;
let illustration = null;
let canvasScope;
let canvasWidth = 500;
let canvasHeight = 500;
// ML models
let facemesh;
let posenet;
let minPoseConfidence = 0.15;
let minPartConfidence = 0.1;
let nmsRadius = 30.0;
// UI variables
var connectButton = null;
// Signalling Variables (used to communicate via server)
var uuid;
var serverConnection;
// RTC Variables!!
var peerConnection = null; // RTCPeerConnection
var dataChannel = null; // RTCDataChannel
var totalLatency = document.getElementById('total-latency');
var transmissionLatency = document.getElementById('transmission-latency');
var extractionLatency = document.getElementById('extraction-latency');
var renderLatency = document.getElementById('projection-latency');
// variable for received webrtc message
var WebRTCmessage;
// Misc
let mobile = false;
const stats = new Stats();
const avatarSvgs = {
'girl': girlSVG.default,
'boy': boySVG.default,
'abstract': abstractSVG.default,
'blathers': blathersSVG.default,
'tom-nook': tomNookSVG.default,
};
// references for render setup
const keypointCanvas = document.getElementById('keypoints');
const canvas = document.getElementById('output');
const keypointCtx = keypointCanvas.getContext('2d');
const videoCtx = canvas.getContext('2d');
// WebRTC streaming channel
let channel;
// Analysis monitors
// const monitors = ['bytesReceived', 'packetsReceived', 'headerBytesReceived', 'packetsLost', 'totalDecodeTime', 'totalInterFrameDelay', 'codecId'];
const monitors = ['bytesReceived'];
// order list for poses deconstruction and reconstruction
const parts = ['nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder', 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist', 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle'];
// summations for finding necessary statistics
let previousTime;
let previousBytesIntegral = 0;
// in: positionsArray containing floats
// out: positionsArray containing uint16 values for reducing transmission bandwidth
function convertFacePositionsToInt(positionsArray) {
let ret = new Uint16Array(positionsArray.length);
for (let i = 0; i < positionsArray.length; i++) {
ret[i] = positionsArray[i]*100;
}
return ret;
}
// in: buffer for a Uint16Array
// out: float array (divide by 100)
function reconstructFaceData(positionsBuffer) {
let view = new Uint16Array(positionsBuffer);
let out = [];
view.forEach(coordinate => {
out.push(coordinate/100);
});
return out;
}
/**
* Loops the transmission of deconstructed poses
*
*/
async function transmit() {
var state = dataChannel.readyState;
if (state !== 'open') {
return;
}
if (guiState.debug.doNotTransmit === true) {
document.getElementById('warningDoNotTransmit').innerText =
'DoNotTransmit is ON, refresh to turn OFF.';
return;
}
// Begin monitoring code for frames per second
stats.begin();
// measures latency starting from the before pose,mesh extraction to after rendering
let beforeStamp = new Date().getTime();
// get face information
const input = tf.browser.fromPixels(canvas);
faceDetection = await facemesh.estimateFaces(input, false, false);
input.dispose();
// initializes poses
let poses = [];
// populates poses
let all_poses = await posenet.estimatePoses(video, {
flipHorizontal: true,
decodingMethod: 'multi-person',
maxDetections: 1,
scoreThreshold: minPartConfidence,
nmsRadius: nmsRadius,
});
// merges all poses
poses = poses.concat(all_poses);
// clears previous render
videoCtx.clearRect(0, 0, videoWidth, videoHeight);
// draw video
videoCtx.save();
videoCtx.scale(-1, 1);
videoCtx.translate(-videoWidth, 0);
videoCtx.drawImage(video, 0, 0, videoWidth, videoHeight);
videoCtx.restore();
// projects pose and face onto svg
keypointCtx.clearRect(0, 0, videoWidth, videoHeight);
if (guiState.debug.showDetectionDebug) {
poses.forEach(({score, keypoints}) => {
if (score >= minPoseConfidence) {
drawKeypoints(keypoints, minPartConfidence, keypointCtx);
drawSkeleton(keypoints, minPartConfidence, keypointCtx);
}
});
faceDetection.forEach(face => {
for (let i = 0; i < face.scaledMesh.length; i++) {
let p = face.scaledMesh[i];
drawPoint(keypointCtx, p[1], p[0], 2, 'red');
}
});
}
// converts pose to streamable buffers
let deconstructedPose;
if (poses.length >= 1) {
deconstructedPose = deconstructPose(poses[0]);
} else {
deconstructedPose = null;
}
// measure data collection latency
let afterExtractionStamp = new Date().getTime();
let extractionTime = afterExtractionStamp - beforeStamp;
extractionLatency.innerText = `Extraction latency: ${extractionTime}ms`;
// deconstructedPose === null if difference between consecutive frames is 0
if (deconstructedPose !== null) {
dataChannel.send(deconstructedPose[0].buffer);
dataChannel.send(deconstructedPose[1].buffer);
} else {
dataChannel.send(0);
dataChannel.send(0);
}
if (faceDetection && faceDetection.length > 0) {
let face = Skeleton.toBufferedFaceFrame(faceDetection[0]);
let arr = convertFacePositionsToInt(face.positions); // convert to uint16 to reduce bitrate
dataChannel.send(arr.buffer);
dataChannel.send(face.faceInViewConfidence);
} else {
dataChannel.send(0);
dataChannel.send(0);
}
//send before timestamp for pipeline latency measurements (total, transmission)
dataChannel.send(beforeStamp);
dataChannel.send(afterExtractionStamp);
// End monitoring code for frames per second
stats.end();
// loop back
setTimeout(transmit, 10);
}
// Set things up, connect event listeners, etc.
function startup() {
// Get the local UI elements ready
connectButton = document.getElementById('connectButton');
// Set event listeners for user interface widgets
connectButton.addEventListener('click', connect, false);
// And set up connection to our websocket signalling server
uuid = createUUID();
serverConnection = new WebSocket(HOST);
serverConnection.onmessage = gotMessageFromServer;
serverConnection.onclose = function(event) {
console.log(event);
console.log('WebSocket is closed now.');
document.getElementById('warningWebSocket').innerText =
'WebSocket connection failed, possibly because of timeout or >2 clients, refresh to try again.';
};
}
// Called when we initiate the connection
function connect() {
console.log('connect');
start(true);
}
// Start the WebRTC Connection
// We're either the caller (when we click 'connect' on our page)
// Or the receiver (when the other page clicks 'connect' and we recieve a signalling message through the websocket server)
function start(isCaller) {
peerConnection = new RTCPeerConnection({});
peerConnection.onicecandidate = gotIceCandidate;
// If we're the caller, we create the Data Channel
// Otherwise, it opens for us and we receive an event as soon as the peerConnection opens
if (isCaller) {
dataChannel = peerConnection.createDataChannel('pose-animator data channel');
dataChannel.onopen = handleDataChannelStatusChange;
dataChannel.onclose = handleDataChannelStatusChange;
} else {
peerConnection.ondatachannel = handleDataChannelCreated;
}
// Kick it off (if we're the caller)
if (isCaller) {
peerConnection.createOffer()
.then(offer => peerConnection.setLocalDescription(offer))
.then(() => console.log('set local offer description'))
.then(() => serverConnection.send(JSON.stringify({
'sdp': peerConnection.localDescription,
'uuid': uuid,
})))
.then(() => console.log('sent offer description to remote'))
.catch(errorHandler);
}
}
// Handle messages from the Websocket signalling server
function gotMessageFromServer(message) {
// If we haven't started WebRTC, now's the time to do it
// We must be the receiver then (ie not the caller)
if (!peerConnection) start(false);
var signal = JSON.parse(message.data);
// Ignore messages from ourself
if (signal.uuid === uuid) return;
console.log('signal: ' + message.data);
if (signal.sdp) {
peerConnection.setRemoteDescription(new RTCSessionDescription(signal.sdp))
.then(() => console.log('set remote description'))
.then(function() {
// Only create answers in response to offers
if (signal.sdp.type === 'offer') {
console.log('got offer');
peerConnection.createAnswer()
.then(answer => peerConnection.setLocalDescription(answer))
.then(() => console.log('set local answer description'))
.then(() => serverConnection.send(JSON.stringify({
'sdp': peerConnection.localDescription,
'uuid': uuid,
})))
.then(() => console.log('sent answer description to remote'))
.catch(errorHandler);
}
})
.catch(errorHandler);
} else if (signal.ice) {
console.log('received ice candidate from remote');
peerConnection.addIceCandidate(new RTCIceCandidate(signal.ice))
.then(() => console.log('added ice candidate'))
.catch(errorHandler);
}
}
function gotIceCandidate(event) {
if (event.candidate != null) {
console.log('got ice candidate');
serverConnection.send(JSON.stringify({
'ice': event.candidate,
'uuid': uuid,
}));
console.log('sent ice candiate to remote');
}
}
function handleDataChannelReceiveMessage(event) {
// for messages received, parse the transmitted arrays as poses and facemeshes and project them
WebRTCmessage.push(event.data);
// message structure:
// [0, 1]: pose, [2]: mesh points, [3]: mesh confidence, [4]: pipelineInit timestamp,
// [5]: timestamp after extraction before transmission
if (WebRTCmessage.length === 6) {
// record transmission time
let afterExtractionStamp = new Date().getTime();
transmissionLatency.innerText = `Transmission latency: ${afterExtractionStamp - WebRTCmessage[5]}ms`;
if (WebRTCmessage[0] !== '0') { // do this if pose was detected
// builds pose object
let pose = reconstructPose(new Int16Array(WebRTCmessage[0]), new Int16Array(WebRTCmessage[1]));
// clears the output canvas
canvasScope.project.clear();
// projects the poses skeleton on the existing svg skeleton
Skeleton.flipPose(pose);
illustration.updateSkeleton(pose, null);
// illustration.draw(canvasScope, videoWidth, videoHeight);
if (guiState.debug.showIllustrationDebug) {
illustration.debugDraw(canvasScope);
}
canvasScope.project.activeLayer.scale(
canvasWidth / videoWidth,
canvasHeight / videoHeight,
new canvasScope.Point(0, 0));
let faceData = WebRTCmessage[2];
if (faceData !== '0') {
let face = {
positions: reconstructFaceData(WebRTCmessage[2]),
faceInViewConfidence: WebRTCmessage[3],
};
illustration.updateSkeleton(pose, face);
illustration.draw(canvasScope, videoWidth, videoHeight);
}
let beforeStamp = WebRTCmessage[4];
let renderedStamp = new Date().getTime();
totalLatency.innerText = `Total pipeline latency: ${renderedStamp - beforeStamp}ms`;
renderLatency.innerText = `Render latency: ${renderedStamp - afterExtractionStamp}ms`;
}
WebRTCmessage = [];
}
}
// Called when we are not the caller (ie we are the receiver)
// and the data channel has been opened
function handleDataChannelCreated(event) {
console.log('dataChannel opened');
dataChannel = event.channel;
dataChannel.onopen = handleDataChannelStatusChange;
dataChannel.onclose = handleDataChannelStatusChange;
}
// Handle status changes on the local end of the data
// channel; this is the end doing the sending of data
// in this example.
function handleDataChannelStatusChange(event) {
if (dataChannel) {
console.log('dataChannel status: ' + dataChannel.readyState);
var state = dataChannel.readyState;
if (state === 'open') {
connectButton.disabled = true;
WebRTCmessage = [];
dataChannel.onmessage = handleDataChannelReceiveMessage;
let statsInterval = window.setInterval(getConnectionStats,
1000);
configureRender();
startTimer();
transmit();
} else {
document.getElementById('warningDataChannel').innerText =
'DataChannel closed. Refresh to reconnect.';
}
}
}
// Close the connection, including data channels if it's open.
function disconnectPeers() {
// Close the RTCDataChannel if it's open.
dataChannel.close();
// Close the RTCPeerConnection
peerConnection.close();
dataChannel = null;
peerConnection = null;
}
function errorHandler(error) {
console.log(error);
}
// Taken from http://stackoverflow.com/a/105074/515584
// Strictly speaking, it's not a real UUID, but it gets the job done here
function createUUID() {
function s4() {
return Math.floor((1 + Math.random()) * 0x10000).toString(16).substring(1);
}
return s4() + s4() + '-' + s4() + '-' + s4() + '-' + s4() + '-' + s4() + s4() + s4();
}
/**
* Converts a pose object to streamable array views, the corresponding
* buffers are streamed
*
*/
function deconstructPose(pose) {
if (pose == null) return null;
let confidences = new Int16Array(18);
let positions = new Int16Array(34);
confidences[0] = 10000 * pose.score; // to reduce transmission size
for (let i = 0; i < pose.keypoints.length; i++) {
confidences[i + 1] = 10000 * pose.keypoints[i].score;
positions[i * 2] = pose.keypoints[i].position.x;
positions[i * 2 + 1] = pose.keypoints[i].position.y;
}
return [confidences, positions];
}
/**
* Converts streamed arrays (after view initialized) into a pose object for
* animation rendering.
*
*/
function reconstructPose(confidences, positions) {
let pose = {
'score': confidences[0] / 10000,
'keypoints': [],
};
for (let i = 0; i < 17; i += 1) {
pose.keypoints.push({
'score': confidences[i + 1] / 10000,
'part': parts[i],
'position': {
'x': positions[i * 2],
'y': positions[i * 2 + 1],
},
});
}
return pose;
}
/**
* Loads a the camera to be used in the demo
*
*/
async function setupCamera() {
if (!navigator.mediaDevices || !navigator.mediaDevices.getUserMedia) {
throw new Error(
'Browser API navigator.mediaDevices.getUserMedia not available');
}
const video = document.getElementById('video');
video.width = videoWidth;
video.height = videoHeight;
const stream = await navigator.mediaDevices.getUserMedia({
'audio': false,
'video': {
facingMode: 'user',
width: videoWidth,
height: videoHeight,
},
});
video.srcObject = stream;
return new Promise((resolve) => {
video.onloadedmetadata = () => {
resolve(video);
};
});
}
async function loadVideo() {
const video = await setupCamera();
video.play();
return video;
}
const defaultPoseNetArchitecture = 'MobileNetV1';
const defaultQuantBytes = 2;
const defaultMultiplier = 1.0;
const defaultStride = 16;
const defaultInputResolution = 200;
const guiState = {
avatarSVG: Object.keys(avatarSvgs)[0],
debug: {
showDetectionDebug: true,
showIllustrationDebug: false,
doNotTransmit: false,
},
};
/**
* Sets up dat.gui controller on the top-right of the window
*
*/
function setupGui(cameras) {
if (cameras.length > 0) {
guiState.camera = cameras[0].deviceId;
}
const gui = new dat.GUI({width: 300});
let multi = gui.addFolder('Image');
gui.add(guiState, 'avatarSVG', Object.keys(avatarSvgs)).onChange(() => parseSVG(avatarSvgs[guiState.avatarSVG]));
multi.open();
let output = gui.addFolder('Debug control');
output.add(guiState.debug, 'showDetectionDebug');
output.add(guiState.debug, 'showIllustrationDebug');
output.add(guiState.debug, 'doNotTransmit');
output.open();
}
/**
* Sets up a frames per second panel on the top-left of the window
*
*/
function setupFPS() {
stats.showPanel(0);
document.getElementById('main').appendChild(stats.dom);
}
// more render configuration
function setupCanvas() {
mobile = isMobile();
if (mobile) {
canvasWidth = Math.min(window.innerWidth, window.innerHeight);
canvasHeight = canvasWidth;
videoWidth *= 0.7;
videoHeight *= 0.7;
}
canvasScope = paper.default;
let canvas = document.querySelector('.illustration-canvas');
canvas.width = canvasWidth;
canvas.height = canvasHeight;
canvasScope.setup(canvas);
}
/**
* Kicks off the demo by loading the posenet model, finding and loading
* available camera devices, and setting off pose transmission device.
*/
export async function bindPage() {
setupCanvas();
toggleLoadingUI(true);
setStatusText('Loading PoseNet model...');
posenet = await posenet_module.load({
architecture: defaultPoseNetArchitecture,
outputStride: defaultStride,
inputResolution: defaultInputResolution,
multiplier: defaultMultiplier,
quantBytes: defaultQuantBytes,
});
setStatusText('Loading FaceMesh model...');
facemesh = await facemesh_module.load();
setStatusText('Loading Avatar file...');
let t0 = new Date();
await parseSVG(Object.values(avatarSvgs)[0]);
setStatusText('Setting up camera...');
try {
video = await loadVideo();
} catch (e) {
let info = document.getElementById('info');
info.textContent = 'this device type is not supported yet, ' +
'or this browser does not support video capture: ' + e.toString();
info.style.display = 'block';
throw e;
}
setupGui([], posenet);
setupFPS();
toggleLoadingUI(false);
}
// initiates svg skeleton to be used
navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia || navigator.mozGetUserMedia;
FileUtils.setDragDropHandler((result) => {
parseSVG(result);
});
async function parseSVG(target) {
let svgScope = await SVGUtils.importSVG(target /* SVG string or file path */);
let skeleton = new Skeleton(svgScope);
illustration = new PoseIllustration(canvasScope);
illustration.bindSkeleton(skeleton, svgScope);
}
/**
* Monitors inbound byte stream for the calculation of network transmission rate
*
*/
function getConnectionStats() {
let taken = [];
peerConnection.getStats(null).then(stats => {
let statsOutput = '';
stats.forEach(report => {
if (!report.id.startsWith('RTCDataChannel_')) return;
Object.keys(report).forEach(statName => {
if (monitors.includes(statName)) {
let bytesIntegral = parseInt(report[statName]);
if (bytesIntegral !== 0 && !taken.includes(statName)) {
let currentTime = new Date().getTime();
let timeIntegral = (currentTime - previousTime) / 1000;
let kbytesPerSecond = (bytesIntegral - previousBytesIntegral) / timeIntegral / 1000;
previousBytesIntegral = bytesIntegral;
previousTime = currentTime;
if (statName === 'bytesReceived') {
statsOutput += `<strong>kilobit rate: </strong> ${(kbytesPerSecond * 8).toFixed(2)} kb/s <br>`;
taken.push(statName);
} else {
statsOutput += `<strong>${statName}:</strong> ${kbytesPerSecond * 8} kb/s <br>`;
taken.push(statName);
}
}
}
});
});
document.querySelector('#bitstream-box').innerHTML = statsOutput;
});
return 0;
}
function startTimer() {
previousTime = new Date().getTime();
}
/**
* Sets up local and receiving renderers
*/
function configureRender() {
canvas.width = videoWidth;
canvas.height = videoHeight;
keypointCanvas.width = videoWidth;
keypointCanvas.height = videoHeight;
}
// close websocket connection when tab closes
window.addEventListener('beforeunload', function(e) {
disconnectPeers();
});
startup();
bindPage();