-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorigin.py
257 lines (236 loc) · 10.4 KB
/
origin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#定义相关的引用
import colorsys
import random
import os
import numpy as np
from yolo import YOLO
from PIL import Image
import cv2
#定义相关的图片及视频的路径
video_path = "D:/test.mp4"
output_path = "D:/0.mp4"
ImageDir = os.listdir("D:/test/testimages")
#用于矩形框的绘制
RecDraw = []
# 用来存储矩形框
# 此段代码为开源项目白嫖代码,用于对每一类产生相应的颜色与之对应
# 很明显开源项目的这段代码也是从yolov3代码白嫖来的
def colors_classes(num_classes):
if (hasattr(colors_classes, "colors") and
len(colors_classes.colors) == num_classes):
return colors_classes.colors
hsv_tuples = [(x / num_classes, 1., 1.) for x in range(num_classes)]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
colors))
random.seed(10101) # Fixed seed for consistent colors across runs.
random.shuffle(colors) # Shuffle colors to decorrelate adjacent classes.
random.seed(None) # Reset seed to default.
colors_classes.colors = colors # Save colors for future calls.
return colors
#这段代码主要是为了完成两个目标框之间的交并比iou的计算
def compute_iou(box1, box2):
ymin1, xmin1, ymax1, xmax1 = box1
ymin2, xmin2, ymax2, xmax2 = box2
# 获取矩形框交集对应的左上角和右下角的坐标(intersection)
xx1 = np.max([xmin1, xmin2])
yy1 = np.max([ymin1, ymin2])
xx2 = np.min([xmax1, xmax2])
yy2 = np.min([ymax1, ymax2])
# 计算两个矩形框面积
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
inter_area = (np.max([0, xx2 - xx1])) * (np.max([0, yy2 - yy1]))
# 计算交集面积
iou = inter_area / (area1 + area2 - inter_area + 1e-6)
# 计算交并比
return iou
def doiou(boxFilterPerson, boxFilterHat, numPeople, numHat):
perhat = np.zeros(shape=(numPeople, numHat))
for perindex in range(numPeople):
for hatindex in range(numHat):
perhat[perindex][hatindex] = compute_iou(boxFilterPerson[perindex], boxFilterHat[hatindex])
return perhat
# track_obj被用作类结构体变量,表征的是被监测物体本身的属性(定义的可以更加简单化一些)
class track_obj(object):
#def __init__(self,newname):self.name=newname,通过访问self.name的形式给实例中增加了name变量,并给name赋了初值newname
def __init__(self):
self.last_rstate = 0
self.last_cov = 0
self.frames = 0
self.trace_id = 0
self.color = 0
#该段代码主要是用于计算两个目标框之间的距离
def calDistance(centersPerson, centersHat):
xAxisDis = np.zeros(shape=(len(centersPerson), len(centersHat)))
for perindex in range(len(centersPerson)):
for hatindex in range(len(centersHat)):
xAxisDis[perindex][hatindex] = centersPerson[perindex][0][0] - centersHat[hatindex][0][0]
# print(np.fabs(xAxisDis).min(1))
return(xAxisDis)
# 计算被检测到物体的中点,可以理解为是传感器,能够检测到实际的值
def cal_centre(out_boxes, out_classes, out_scores, score_thres):
print(out_boxes, out_classes, out_scores)
dict = {}
for key in out_classes:
dict[key] = dict.get(key, 0) + 1
print(len(dict))
if len(dict) == 0:
return 000, 000
if len(dict) == 1:
for PersonIndex in range(len(out_boxes)):
RecDraw.append(out_boxes[PersonIndex])
return 666, 666
# elif dict[0] > dict[1]:
# return 666, 666 # 简单版本的就是人比帽子多直接警告,复杂一点就直接pass交给后面的任务
boxFilterPerson = []
boxFilterHat = []
centersPerson = []
centersHat = []
for div_box, div_class, div_score in zip(out_boxes, out_classes, out_scores):
if (div_score >= score_thres) and (div_class == 0):
boxFilterPerson.append(div_box)
centre = np.array([[(div_box[1] + div_box[3]) // 2], [(div_box[0] + div_box[2]) // 2]])
centersPerson.append(centre)
if (div_score >= score_thres) and (div_class == 1):
boxFilterHat.append(div_box)
centre_hat = np.array([[(div_box[1] + div_box[3]) // 2], [(div_box[0] + div_box[2]) // 2]])
centersHat.append(centre_hat)
numPeople = len(centersPerson)
numHat = len(centersHat)
perhat = doiou(boxFilterPerson, boxFilterHat, numPeople, numHat)
m = perhat.sum(axis=1)
for index in range(len(m)):
if m[index] == 0:
RecDraw.append(boxFilterPerson[index])
return 666, 666
xAxisDis = calDistance(centersPerson, centersHat)
dis = np.fabs(xAxisDis).min(1)
for dis_index in range(len(dis)):
if m[dis_index] > 20:
RecDraw.append(boxFilterPerson[index])
return 666, 666
return centersPerson, numPeople
class dokalman():
def __init__(self):
self.count = 0
self.dotracking = []
self.str_location = []
self.distance_max = 200
# """注意矩阵的行列此处并没有进行修改"""
def tracking(self, centers, num, image, mode): # 先尝试着单目标的追踪
font = cv2.FONT_HERSHEY_SIMPLEX
if mode == 0:
if centers == 000 and num == 000:
cv2.putText(image, "need check", (11, 33), font, 1, [230, 0, 0], 2)
if centers == 666 and num == 666:
cv2.putText(image, "detecting", (11, 11 + 22), font, 1, [230, 0, 0], 2)
for index in range(len(RecDraw)):
cv2.rectangle(image, (RecDraw[index][1], RecDraw[index][0]), (RecDraw[index][3], RecDraw[index][2]), (230, 0, 0), 2)
elif centers != 666 or num != 666:
cv2.putText(image, "need check", (11, 33), font, 1, [230, 0, 0], 2)
elif mode == 1:
if centers == 000 and num == 000:
cv2.putText(image, "need check", (11, 33), font, 1, [0, 0, 230], 2)
if centers == 666 and num == 666:
cv2.putText(image, "detecting", (11, 11 + 22), font, 1, [0, 0, 230], 2)
for index in range(len(RecDraw)):
cv2.rectangle(image, (RecDraw[index][1], RecDraw[index][0]), (RecDraw[index][3], RecDraw[index][2]),
(0, 0, 230), 2)
elif centers != 666 or num != 666:
cv2.putText(image, "need check", (11, 33), font, 1, [0, 0, 230], 2)
yolov3_args = {
"model_path": 'logs/000/trained_weights_final.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"score": 0.50,
"iou": 0.3,
"model_image_size": (416, 416),
"gpu_num": 1,
}
def image(pic_path):
mode = 0
RecDraw.clear()
if pic_path == 0:
yolov3 = YOLO(**yolov3_args)
for i in range(len(ImageDir)):
RecDraw.clear()
ImagePath = "D:/test/testimages/" + ImageDir[i]
ImageName = "D:/test/image/" + str(i) + ".jpg"
img = Image.open(ImagePath)
image, boxes, scores, classes = yolov3.detect_image_mul(img)
centers, num = cal_centre(boxes, classes, scores, 0.05)
result = np.asarray(image)
tracker = dokalman()
tracker.tracking(centers, num, result, mode)
image_bgr = cv2.cvtColor(np.asarray(result), cv2.COLOR_RGB2BGR)
cv2.imwrite(ImageName, image_bgr)
elif pic_path != 0:
yolov3 = YOLO(**yolov3_args)
img = Image.open(pic_path)
image, boxes, scores, classes = yolov3.detect_image_mul(img)
centers, num = cal_centre(boxes, classes, scores, 0.05)
result = np.asarray(image)
tracker = dokalman()
tracker.tracking(centers, num, result, mode)
# print("look there!", RecDraw)
image_bgr = cv2.cvtColor(np.asarray(result), cv2.COLOR_RGB2BGR)
cv2.imwrite("D:/test/pp30.jpg", image_bgr)
cv2.imshow("re", image_bgr)
cv2.waitKey(0)
cv2.destroyAllWindows()
def video():
mode = 1
yolov3 = YOLO(**yolov3_args)
video_cap = cv2.VideoCapture(video_path)
if not video_cap.isOpened():
raise IOError
video_FourCC = int(video_cap.get(cv2.CAP_PROP_FOURCC))
video_fps = video_cap.get(cv2.CAP_PROP_FPS)
video_size = (int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# video_size = (int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)))
isOutput = True if output_path != "" else False
if isOutput:
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
tracker = dokalman()
frame_index = 0
name = 11632
while True:
RecDraw.clear()
return_value, frame = video_cap.read()
frame_index = frame_index + 1
if frame is None:
break
if frame_index % 2 == 1:
x, y = frame.shape[0:2]
new_image = cv2.resize(frame, (int(y / 2), int(x / 2)))
name += 1
strname = "D:/test/" + str(name) + ".jpg"
cv2.imwrite(strname, new_image)
# transposedImage = cv2.transpose(frame)
# flipedImageX = cv2.flip(transposedImage, 0)
# image_new = Image.fromarray(flipedImageX)
image_new = Image.fromarray(frame)
image, boxes, scores, classes = yolov3.detect_image_mul(image_new)
centers, num = cal_centre(boxes, classes, scores, 0.05)
result = np.asarray(image)
tracker.tracking(centers, num, result, mode)
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.imshow("result", result)
if isOutput:
out.write(result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if __name__ == '__main__':
# print("please input the type of your want to identify")
# m = input("pic or video? Answer: ")
# if m == "video":
video()
# elif m == "pic":
# pic_path = input("please input image path : ")
# image(pic_path)
# image("D:/git/work/keras-yolo3/images/1.jpg")
# image("D:/r.jpg")
# image(0)