-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmask_former_trainer.py
273 lines (234 loc) · 11 KB
/
mask_former_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
MaskFormer Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import copy
import itertools
import json
import logging
import os
import sys
from typing import Any, Dict, List, Set
import detectron2.utils.comm as comm
import torch
import wandb
from detectron2.config import get_cfg, CfgNode
from detectron2.engine import DefaultTrainer, default_setup
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger
import utils
# MaskFormer
from config import add_gwm_config
logger = logging.getLogger('gwm')
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class adapted to DETR.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name):
pass
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if "backbone" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
elif optimizer_type == "RMSProp":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.RMSprop)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
def setup(args):
"""
Create configs and perform basic setups.
"""
wandb_inited = False
if 'CONFIG_FILE' in args.opts and not args.wandb_sweep_mode:
logger.warning(
f"Found CONFIG_FILE key in OPT args and using {args.opts[args.opts.index('CONFIG_FILE') + 1]} instead of {args.config_file}")
args.config_file = args.opts[args.opts.index('CONFIG_FILE') + 1]
else:
cfg = get_cfg()
add_gwm_config(cfg)
wandb_basedir = cfg.WANDB.BASEDIR
cfg_dict = CfgNode.load_yaml_with_base(args.config_file, allow_unsafe=True)
if 'WANDB' in cfg_dict and 'BASEDIR' in cfg_dict['WANDB']:
wandb_basedir = cfg_dict['WANDB']['BASEDIR']
if 'CONFIG_FILE' in cfg_dict and cfg_dict['CONFIG_FILE'] is not None:
logger.warning(
f"Found CONFIG_FILE key in the config.yaml file and using {cfg_dict['CONFIG_FILE']} instead of {args.config_file}")
args.config_file = cfg_dict['CONFIG_FILE']
if args.wandb_sweep_mode:
if PathManager.isfile('wandb.yaml'):
wandb_cfg = CfgNode.load_yaml_with_base('wandb.yaml', allow_unsafe=False)
wandb.init(project=wandb_cfg['PROJECT'], entity=wandb_cfg['USER'], dir=wandb_basedir)
wandb_inited = True
if wandb.run.sweep_id: # sweep active
sweep_dict = dict(wandb.config)
if 'CONFIG_FILE' in sweep_dict:
args.config_file = sweep_dict['CONFIG_FILE']
logger.warning(f"Loading CONFIG_FILE as set in sweep config: {args.config_file}")
elif 'CONFIG_FILE' in args.opts:
args.config_file = args.opts[args.opts.index('CONFIG_FILE') + 1]
logger.warning(f"Loading CONFIG_FILE as set in the optional arguments: {args.config_file}")
if 'GWM.MODEL' in args.opts and not args.wandb_sweep_mode:
logger.warning(
"It is advised to not set GWM.MODEL in OPT args and instead set it in the config.yaml file")
model = args.opts[args.opts.index('GWM.MODEL') + 1]
else:
cfg = get_cfg()
add_gwm_config(cfg)
model = cfg.GWM.MODEL
wandb_basedir = cfg.WANDB.BASEDIR
cfg_dict = CfgNode.load_yaml_with_base(args.config_file, allow_unsafe=True)
if 'GWM' in cfg_dict and 'MODEL' in cfg_dict['GWM']:
model = cfg_dict['GWM']['MODEL']
if 'WANDB' in cfg_dict and 'BASEDIR' in cfg_dict['WANDB']:
wandb_basedir = cfg_dict['WANDB']['BASEDIR']
if args.wandb_sweep_mode:
if PathManager.isfile('wandb.yaml'):
if not wandb_inited:
wandb_cfg = CfgNode.load_yaml_with_base('wandb.yaml', allow_unsafe=False)
wandb.init(project=wandb_cfg['PROJECT'], entity=wandb_cfg['USER'], dir=wandb_basedir)
wandb_inited = True
if args.wandb_sweep_mode:
sweep_dict = dict(wandb.config)
if 'GWM.MODEL' in sweep_dict:
logger.warning(
"It is advised to not set GWM.MODEL in sweep config and instead set it in the config.yaml file")
model = sweep_dict['GWM.MODEL']
elif 'GWM.MODEL' in args.opts:
logger.warning(
"It is advised to not set GWM.MODEL in optional arguments and instead set it in the config.yaml file")
model = args.opts[args.opts.index('GWM.MODEL') + 1]
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
if model == "MASKFORMER":
from mask_former import add_mask_former_config
add_mask_former_config(cfg)
else:
logger.error(f'Unknown Model: {model}. Exiting..')
sys.exit(0)
add_gwm_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.WANDB.ENABLE = (cfg.WANDB.ENABLE or args.wandb_sweep_mode) and not args.eval_only
datestring = utils.log.get_datestring_for_the_run()
if cfg.WANDB.ENABLE:
if PathManager.isfile('wandb.yaml'):
if not wandb_inited:
wandb_cfg = CfgNode.load_yaml_with_base('wandb.yaml', allow_unsafe=False)
wandb.init(project=wandb_cfg['PROJECT'], entity=wandb_cfg['USER'], dir=cfg.WANDB.BASEDIR)
if args.wandb_sweep_mode: # sweep active
sweep_list = [(k, v) for k, v in dict(wandb.config).items()]
sweep_list = [item for items in sweep_list for item in items]
cfg.merge_from_list(sweep_list)
if cfg.LOG_ID is not None:
api = wandb.Api()
run = api.run(path=f"{wandb_cfg['USER']}/{wandb_cfg['PROJECT']}/{wandb.run.id}")
run.name = f'{cfg.LOG_ID}/{datestring}-{wandb.run.id}'
run.save()
else:
logger.error("W&B config file 'src/wandb.yaml' does not exist!")
cfg.WANDB.ENABLE = False
if args.resume_path:
cfg.OUTPUT_DIR = "/".join(args.resume_path.split('/')[:-2]) # LOG_ID/datestring/checkpoints/checkpoints.pth
if args.eval_only:
cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, 'eval', datestring)
else:
if cfg.LOG_ID and not cfg.SLURM:
cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_BASEDIR, cfg.LOG_ID)
else:
cfg.OUTPUT_DIR = cfg.OUTPUT_BASEDIR
if args.eval_only:
cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, 'eval', datestring)
else:
cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, datestring)
os.makedirs(f'{cfg.OUTPUT_DIR}/checkpoints', exist_ok=True)
if cfg.WANDB.ENABLE:
wandb.config.update(cfg, allow_val_change=True)
if cfg.GWM.LOSS == 'OG':
cfg.FLAGS.EXTENDED_FLOW_RECON_VIS = False
cfg.FLAGS.COMP_NLL_FOR_GT = False
cfg.freeze()
default_setup(cfg, args)
# Setup logger for "gwm" module
setup_logger(output=f'{cfg.OUTPUT_DIR}/main.log', distributed_rank=comm.get_rank(), name="gwm")
with open(f'{cfg.OUTPUT_DIR}/args.json', 'w') as f:
json.dump(args.__dict__, f, indent=2)
return cfg