-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathcross_tissue_generator.py
64 lines (48 loc) · 2.41 KB
/
cross_tissue_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
'''
@author: maria
'''
import scanpy.api as sc
import numpy as np
import urllib.request
import gzip
import shutil
import os
class CrossTissueBenchmark():
def __init__(self, download=True, dir_path='.', tabula_muris_senis=False):
'''
download: if True, data will be downloaded automatically and saved in dir_path, otherwise
data will be read from dir_path
dir_path: path to directory where data is stored (if already downloaded), or where the data
should be saved
tabula_muris_senis: if False generator for Tabula Muris data only will be created, otherwise
for Tabula Muris Senis
'''
if download:
self.download_data(dir_path)
self.adata = sc.read_h5ad(os.path.join(dir_path,'tms-facs-mars.h5ad'))
self.preprocess()
if not tabula_muris_senis:
self.adata = self.adata[self.adata.obs['age']=='3m']
def download_data(self, filepath):
urllib.request.urlretrieve('http://snap.stanford.edu/mars/data/tms-facs-mars.tar.gz', os.path.join(filepath,'tms-facs-mars.tar.gz'))
with gzip.open(os.path.join(filepath,'tms-facs-mars.tar.gz'), 'rb') as f_in:
with open( os.path.join(filepath,'tms-facs-mars.h5ad'), 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
def preprocess(self, annotation_type='cell_ontology_class_reannotated'):
self.adata.obs[annotation_type] = self.adata.obs[annotation_type].astype(str)
self.adata = self.adata[self.adata.obs[annotation_type]!='nan',:]
self.adata = self.adata[self.adata.obs[annotation_type]!='NA',:]
sc.pp.filter_genes(self.adata, min_cells=5)
sc.pp.filter_cells(self.adata, min_counts=5000)
sc.pp.filter_cells(self.adata, min_genes=500)
sc.pp.normalize_per_cell(self.adata, counts_per_cell_after=1e4)
sc.pp.log1p(self.adata)
sc.pp.scale(self.adata, max_value=10, zero_center=True)
self.adata[np.isnan(self.adata.X)] = 0
def cross_tissue_generator(self):
tissues = list(set(self.adata.obs['tissue']))
tissues = sorted(tissues)
for tissue in tissues:
test = self.adata[self.adata.obs['tissue'] == tissue,:]
train = self.adata[self.adata.obs['tissue'] != tissue,:]
yield (train, test)