forked from nogilnick/pythonml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbprop.py
executable file
·78 lines (67 loc) · 1.89 KB
/
bprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#bprop.py
#Author: Nicholas Smith
import numpy as np
#Array of layer sizes
ls = np.array([2, 4, 4, 1])
n = len(ls)
#List of weight matrices (each a numpy array)
W = []
#Initialize weights to small random values
for i in range(n - 1):
W.append(np.random.randn(ls[i], ls[i + 1]) * 0.1)
#List of bias vectors initialized to small random values
B = []
for i in range(1, n):
B.append(np.random.randn(ls[i]) * 0.1)
#List of output vectors
O = []
for i in range(n):
O.append(np.zeros([ls[i]]))
#List of Delta vectors
D = []
for i in range(1, n):
D.append(np.zeros(ls[i]))
#Input vectors (1 row per each)
A = np.matrix([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]])
#Target Vectors (1 row per each)
y = np.matrix([[-0.5], [0.5], [0.5], [-0.5]])
#Activation function (tanh) for each layer
#Linear activation for final layer
actF = []
dF = []
for i in range(n - 1):
actF.append(lambda (x) : np.tanh(x))
#Derivative of activation function in terms of itself
dF.append(lambda (y) : 1 - np.square(y))
#Linear activation for final layer
actF.append(lambda (x): x)
dF.append(lambda (x) : np.ones(x.shape))
#Learning rate
a = 0.5
#Number of iterations
numIter = 250
#Loop for each iteration
for c in range(numIter):
#loop over all input vectors
for i in range(len(A)):
print(str(i))
#Target vector
t = y[i, :]
#Feed-forward step
O[0] = A[i, :]
for j in range(n - 1):
O[j + 1] = actF[j](np.dot(O[j], W[j]) + B[j])
print('Out:' + str(O[-1]))
#Compute output node delta values
D[-1] = np.multiply((t - O[-1]), dF[-1](O[-1]))
#Compute hidden node deltas
for j in range(n - 2, 0, -1):
D[j - 1] = np.multiply(np.dot(D[j], W[j].T), dF[j](O[j]))
#Perform weight and bias updates
for j in range(n - 1):
W[j] = W[j] + a * np.outer(O[j], D[j])
B[j] = B[j] + a * D[j]
print('\nFinal weights:')
#Display final weights
for i in range(n - 1):
print('Layer ' + str(i + 1) + ':\n' + str(W[i]) + '\n')