forked from taurushq-io/multi-party-sig
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.go
275 lines (247 loc) · 7.1 KB
/
config.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
package config
import (
"errors"
"fmt"
"io"
"math"
"github.com/taurusgroup/multi-party-sig/internal/bip32"
"github.com/taurusgroup/multi-party-sig/internal/params"
"github.com/taurusgroup/multi-party-sig/internal/types"
"github.com/taurusgroup/multi-party-sig/pkg/math/curve"
"github.com/taurusgroup/multi-party-sig/pkg/math/polynomial"
"github.com/taurusgroup/multi-party-sig/pkg/paillier"
"github.com/taurusgroup/multi-party-sig/pkg/party"
"github.com/taurusgroup/multi-party-sig/pkg/pedersen"
)
// Config contains all necessary cryptographic keys necessary to generate a signature.
// It also represents the `SSID` after having performed a keygen/refresh operation.
// where SSID = (𝔾, t, n, P₁, …, Pₙ, (X₁, Y₁, N₁, s₁, t₁), …, (Xₙ, Yₙ, Nₙ, sₙ, tₙ)).
//
// To unmarshal this struct, EmptyConfig should be called first with a specific group,
// before using cbor.Unmarshal with that struct.
type Config struct {
// Group returns the Elliptic Curve Group associated with this config.
Group curve.Curve
// ID is the identifier of the party this Config belongs to.
ID party.ID
// Threshold is the integer t which defines the maximum number of corruptions tolerated for this config.
// Threshold + 1 is the minimum number of parties' shares required to reconstruct the secret/sign a message.
Threshold int
// ECDSA is this party's share xᵢ of the secret ECDSA x.
ECDSA curve.Scalar
// ElGamal is this party's yᵢ used for ElGamal.
ElGamal curve.Scalar
// Paillier is this party's Paillier decryption key.
Paillier *paillier.SecretKey
// RID is a 32 byte random identifier generated for this config
RID types.RID
// ChainKey is the chaining key value associated with this public key
ChainKey types.RID
// Public maps party.ID to public. It contains all public information associated to a party.
Public map[party.ID]*Public
}
// Public holds public information for a party.
type Public struct {
// ECDSA public key share
ECDSA curve.Point
// ElGamal is this party's public key for ElGamal encryption.
ElGamal curve.Point
// Paillier is this party's public Paillier key.
Paillier *paillier.PublicKey
// Pedersen is this party's public Pedersen parameters.
Pedersen *pedersen.Parameters
}
// PublicPoint returns the group's public ECC point.
func (c *Config) PublicPoint() curve.Point {
sum := c.Group.NewPoint()
partyIDs := make([]party.ID, 0, len(c.Public))
for j := range c.Public {
partyIDs = append(partyIDs, j)
}
l := polynomial.Lagrange(c.Group, partyIDs)
for j, partyJ := range c.Public {
sum = sum.Add(l[j].Act(partyJ.ECDSA))
}
return sum
}
// PartyIDs returns a sorted slice of party IDs.
func (c *Config) PartyIDs() party.IDSlice {
ids := make([]party.ID, 0, len(c.Public))
for j := range c.Public {
ids = append(ids, j)
}
return party.NewIDSlice(ids)
}
// WriteTo implements io.WriterTo interface.
// Note: this writes each id concatenated with its len
func (c *Config) WriteTo(w io.Writer) (total int64, err error) {
if c == nil {
return 0, io.ErrUnexpectedEOF
}
var n int64
// write t
n, err = types.ThresholdWrapper(c.Threshold).WriteTo(w)
total += n
if err != nil {
return
}
// write partyIDs
partyIDs := c.PartyIDs()
n, err = partyIDs.WriteTo(w)
total += n
if err != nil {
return
}
// write rid
n, err = c.RID.WriteTo(w)
total += n
if err != nil {
return
}
// write all party data
for _, j := range partyIDs {
// write Xⱼ
n, err = c.Public[j].WriteTo(w)
total += n
if err != nil {
return
}
}
return
}
// Domain implements hash.WriterToWithDomain.
func (c *Config) Domain() string {
return "CMP Config"
}
// Domain implements hash.WriterToWithDomain.
func (Public) Domain() string {
return "Public Data"
}
// WriteTo implements io.WriterTo interface.
func (p *Public) WriteTo(w io.Writer) (total int64, err error) {
if p == nil {
return 0, io.ErrUnexpectedEOF
}
// write ECDSA
data, err := p.ECDSA.MarshalBinary()
if err != nil {
return
}
n, err := w.Write(data)
total = int64(n)
if err != nil {
return
}
// write ElGamal
data, err = p.ElGamal.MarshalBinary()
if err != nil {
return
}
n, err = w.Write(data)
total += int64(n)
if err != nil {
return
}
n64, err := p.Paillier.WriteTo(w)
total += n64
if err != nil {
return
}
n64, err = p.Pedersen.WriteTo(w)
total += n64
if err != nil {
return
}
return
}
// CanSign returns true if the given _sorted_ list of signers is
// a valid subset of the original parties of size > t,
// and includes self.
func (c *Config) CanSign(signers party.IDSlice) bool {
if !ValidThreshold(c.Threshold, len(signers)) {
return false
}
// check for duplicates
if !signers.Valid(c.Group) {
return false
}
if !signers.Contains(c.ID) {
return false
}
// check that the signers are a subset of the original parties,
// that it includes self, and that the size is > t.
for _, j := range signers {
if _, ok := c.Public[j]; !ok {
return false
}
}
return true
}
func ValidThreshold(t, n int) bool {
if t < 0 || t > math.MaxUint32 {
return false
}
if n <= 0 || t > n-1 {
return false
}
return true
}
// Derive adds adjust to the private key, resulting in a new key pair.
//
// This supports arbitrary derivation methods, including BIP32. For explicit
// BIP32 support, see DeriveBIP32.
//
// A new chain key can be passed, which will replace the existing one for the new keypair.
func (c *Config) Derive(adjust curve.Scalar, newChainKey []byte) (*Config, error) {
if len(newChainKey) <= 0 {
newChainKey = c.ChainKey
}
if len(newChainKey) != params.SecBytes {
return nil, fmt.Errorf("expecte %d bytes for chain key, found %d", params.SecBytes, len(newChainKey))
}
// We need to add the scalar we've derived to the underlying secret,
// for which it's sufficient to simply add it to each share. This means adding
// scalar * G to each verification share as well.
adjustG := adjust.ActOnBase()
public := make(map[party.ID]*Public, len(c.Public))
for k, v := range c.Public {
public[k] = &Public{
ECDSA: v.ECDSA.Add(adjustG),
ElGamal: v.ElGamal,
Paillier: v.Paillier,
Pedersen: v.Pedersen,
}
}
return &Config{
Group: c.Group,
ID: c.ID,
Threshold: c.Threshold,
ECDSA: c.Group.NewScalar().Set(c.ECDSA).Add(adjust),
ElGamal: c.ElGamal,
Paillier: c.Paillier,
RID: c.RID,
ChainKey: newChainKey,
Public: public,
}, nil
}
// DeriveBIP32 derives a sharing of the ith child of the consortium signing key.
//
// This function uses unhardened derivation, deriving a key without including the
// underlying private key. This function will panic if i ⩾ 2³¹, since that indicates
// a hardened key.
//
// Sometimes, an error will be returned, indicating that this index generates
// an invalid key.
//
// See: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
func (c *Config) DeriveBIP32(i uint32) (*Config, error) {
publicPoint, ok := c.PublicPoint().(*curve.Secp256k1Point)
if !ok {
return nil, errors.New("DeriveBIP32 must be called with secp256k1")
}
scalar, newChainKey, err := bip32.DeriveScalar(publicPoint, c.ChainKey, i)
if err != nil {
return nil, err
}
return c.Derive(scalar, newChainKey)
}