diff --git a/src/sgis/__init__.py b/src/sgis/__init__.py index ee0d5e27..ef99b31e 100644 --- a/src/sgis/__init__.py +++ b/src/sgis/__init__.py @@ -68,7 +68,6 @@ from .geopandas_tools.polygons_as_rings import PolygonsAsRings from .geopandas_tools.polygons_to_lines import get_rough_centerlines from .geopandas_tools.sfilter import sfilter, sfilter_inverse, sfilter_split -from .geopandas_tools.snap_polygons import coverage_clean, snap_polygons from .helpers import get_object_name, sort_nans_last from .io.opener import opener from .io.read_parquet import read_parquet_url diff --git a/src/sgis/geopandas_tools/polygons_to_lines.py b/src/sgis/geopandas_tools/polygons_to_lines.py index f92fca72..40232950 100644 --- a/src/sgis/geopandas_tools/polygons_to_lines.py +++ b/src/sgis/geopandas_tools/polygons_to_lines.py @@ -1,85 +1,31 @@ -import functools -import itertools -from typing import Callable, Iterable - -import geopandas as gpd -import igraph import networkx as nx -import numba import numpy as np import pandas as pd from geopandas import GeoDataFrame, GeoSeries from geopandas.array import GeometryArray -from IPython.display import display -from networkx.algorithms import approximation as approx from networkx.utils import pairwise -from numpy import ndarray from numpy.typing import NDArray -from pandas import Index from shapely import ( - Geometry, STRtree, - area, - box, - buffer, - centroid, - difference, distance, extract_unique_points, get_coordinates, - get_exterior_ring, - get_interior_ring, - get_num_coordinates, - get_num_interior_rings, get_parts, get_rings, - intersection, - intersects, - is_empty, - is_ring, - length, line_merge, - linearrings, linestrings, make_valid, - polygons, segmentize, - simplify, unary_union, voronoi_polygons, ) from shapely.errors import GEOSException -from shapely.geometry import ( - LinearRing, - LineString, - MultiLineString, - MultiPoint, - Point, - Polygon, -) +from shapely.geometry import LineString, Point from shapely.ops import nearest_points -from ..maps.maps import explore, explore_locals, qtm -from ..networkanalysis._od_cost_matrix import _get_od_df -from ..networkanalysis.closing_network_holes import close_network_holes, get_angle -from ..networkanalysis.cutting_lines import split_lines_by_nearest_point -from .buffer_dissolve_explode import buff, dissexp_by_cluster -from .conversion import coordinate_array, to_gdf -from .duplicates import get_intersections -from .general import _push_geom_col, clean_geoms, get_common_crs, get_grouped_centroids -from .general import sort_large_first as sort_large_first_func -from .general import sort_long_first, to_lines -from .geometry_types import get_geom_type, make_all_singlepart, to_single_geom_type -from .neighbors import ( - get_all_distances, - get_k_nearest_neighbors, - get_neighbor_indices, - k_nearest_neighbors, -) -from .overlay import clean_overlay -from .polygon_operations import close_small_holes, close_thin_holes, get_gaps, get_holes -from .polygons_as_rings import PolygonsAsRings -from .sfilter import sfilter, sfilter_inverse, sfilter_split +from .general import clean_geoms +from .neighbors import get_all_distances +from .sfilter import sfilter_split def get_rough_centerlines( @@ -106,18 +52,6 @@ def get_rough_centerlines( geoms = gdf.geometry if isinstance(gdf, GeoDataFrame) else gdf - """if max_segment_length is None: - hull = geoms.convex_hull - max_segment_length = ( - ((geoms.area / hull.area) + (hull.length / geoms.length)) - / 2 - * np.log2(geoms.length + 1) - * np.log2(get_num_coordinates(geoms.geometry) + 1) - / 10 - ) - - max_segment_length = 1""" - segmentized = segmentize(geoms.geometry, max_segment_length=max_segment_length) # voronoi can cause problems if coordinates are nearly identical @@ -182,26 +116,9 @@ def get_rough_centerlines( # straight end buffer to remove all in between ends to_be_erased = points.index.isin(end_to_end.index) - intersect, dont_intersect = sfilter_split( + _, dont_intersect = sfilter_split( points.iloc[to_be_erased], end_to_end.buffer(precision, cap_style=2) ) - """ - centroids = nearest_points( - geoms.centroid, intersect.groupby(level=0).agg(unary_union) - )[1]""" - - """points.iloc[to_be_erased] = points.iloc[to_be_erased].difference( - end_to_end.buffer(precision, cap_style=2) - )""" - - """qtm( - intersect=to_gdf(intersect, 25833), - dont_intersect=to_gdf(dont_intersect, 25833), - end_to_end=to_gdf(end_to_end, 25833), - not_within=to_gdf(not_within, 25833), - # centroids=to_gdf(centroids, 25833), - # not_to_be_erased=to_gdf(points.iloc[~to_be_erased], 25833), - )""" points = ( clean_geoms( @@ -225,31 +142,6 @@ def get_rough_centerlines( ] ) - """ - index_mapper = dict(enumerate(points.index)) - point_mapper = dict(enumerate(points.values)) - points.index = range(len(points)) - neighbors = get_k_nearest_neighbors(points, points, k=5).loc[ - lambda x: x["distance"] > 0 - ] - - neighbors["lines"] = make_lines_between_points( - neighbors.index.map(point_mapper).values, - neighbors["neighbor_index"].map(point_mapper).values, - ) - neighbors.index = neighbors.index.map(index_mapper) - - def tryhard_line_merge(x): - return unary_union(line_merge(unary_union(x))) - - longest_lines = ( - GeoSeries(neighbors.groupby(level=0)["lines"].agg(tryhard_line_merge)) - .explode(index_parts=False) - .pipe(sort_long_first) - .loc[lambda x: ~x.index.duplicated()] - ) - """ - def get_traveling_salesman_lines(df): path = traveling_salesman_problem(df, return_to_start=False) try: @@ -290,125 +182,9 @@ def get_traveling_salesman_lines(df): ).explode() ) - """centerlines3 = centerlines2.groupby(level=0).agg( - lambda x: line_merge(unary_union(x)) - ) - centerlines3 = simplify(centerlines3, tolerance=tolerance / 10)""" - - explore( - centerlines=to_gdf(centerlines, 25833), - centerlines2=to_gdf(centerlines2, 25833), - centerlines3=to_gdf(centerlines3, 25833), - voronoi_lines=to_gdf(voronoi_lines, 25833), - # within_polygons=to_gdf(within_polygons, 25833), - # not_within_but_relevant=to_gdf(not_within_but_relevant, 25833).clip( - # g.buffer(5) - # ), - points=points.geometry.reset_index(), - # has_no_points=to_gdf(has_no_points, 25833), - segmentized=segmentized.reset_index(), - endpoints=endpoints.reset_index(), - ) - - if 0: - more_than_two = centerlines.loc[lambda x: x.groupby(level=0).size() > 2] - one_or_two = centerlines.loc[lambda x: x.groupby(level=0).size() <= 2] - print(more_than_two) - print(more_than_two.groupby(level=0).apply(lambda x: x.length < x.length.max())) - without_longest = more_than_two.iloc[ - lambda x: x.groupby(level=0) - .apply(lambda x: x.length < x.length.max()) - .values - ] - print(without_longest) - centerlines = pd.concat([one_or_two, without_longest]) - - print(centerlines) - - # centerlines = centerlines.loc[without_longest] - centerlines = centerlines3.groupby(level=0).agg( lambda x: line_merge(unary_union(x)) ) - explore(centerlines=to_gdf(centerlines, 25833)) - - """ - # try because pd.Series.explode doesn't take index_parts - try: - centerlines = centerlines.explode(index_parts=False) - except Exception: - centerlines = centerlines.explode() - - intersect_length_ratio: NDArray[float] = length( - intersection( - centerlines.values, - geoms.loc[centerlines.index].buffer(precision * 2).values, - ) - ) / length(centerlines.values) - - centerlines = GeoSeries(centerlines.loc[intersect_length_ratio > 0.1]) - - is_ring = centerlines.is_ring - if is_ring.any(): - without_longest = ( - centerlines.loc[is_ring] - .groupby(level=0) - .agg(lambda x: x.length != x.length.idxmax()) - ) - centerlines.loc[is_ring] = centerlines.loc[without_longest] - - centerlines = centerlines.groupby(level=0).agg(lambda x: line_merge(unary_union(x))) - - def connect_multilines(multiline): - lines = get_parts(multiline) - lines_between = [] - for line in lines: - lines_between += [ - LineString(nearest_points(line, multiline.difference(line))) - ] - return MultiLineString(list(lines) + lines_between) - - is_multiline = centerlines.geom_type == "MultiLineString" - centerlines.loc[is_multiline] = line_merge( - centerlines.loc[is_multiline].apply(connect_multilines) - )""" - - # simplify by twice the tolerance to not get sharp and short turns - # centerlines = simplify(centerlines, tolerance=tolerance / 10) - - """not_simple = ~centerlines.is_simple - if not_simple.any(): - centerlines.loc[not_simple] = simplify( - centerlines.loc[not_simple], - tolerance=centerlines.loc[not_simple].length / 100, - )""" - - """explore( - voronoi_lines=to_gdf(voronoi_lines, 25833), - # within_polygons=to_gdf(within_polygons, 25833), - # not_within_but_relevant=to_gdf(not_within_but_relevant, 25833).clip( - # g.buffer(5) - # ), - points=points.geometry.reset_index(), - # has_no_points=to_gdf(has_no_points, 25833), - segmentized=segmentized.reset_index(), - centerlines=centerlines.reset_index(), - endpoints=endpoints.reset_index(), - )""" - - """for g in segmentized: - qtm( - voronoi_lines=to_gdf(voronoi_lines, 25833).clip(g.buffer(5)), - # within_polygons=to_gdf(within_polygons, 25833).clip(g.buffer(5)), - # not_within_but_relevant=to_gdf(not_within_but_relevant, 25833).clip( - # g.buffer(5) - # ), - points=points.geometry.reset_index().clip(g.buffer(5)), - # has_no_points=to_gdf(has_no_points, 25833).clip(g.buffer(5)), - segmentized=segmentized.reset_index().clip(g.buffer(5)), - centerlines=centerlines.reset_index().clip(g.buffer(5)), - endpoints=endpoints.reset_index().clip(g.buffer(5)), - )""" if isinstance(gdf, GeoSeries): return GeoSeries( @@ -434,14 +210,7 @@ def make_lines_between_points( ] ).sort_index() - try: - return linestrings(coords.values, indices=coords.index) - except Exception as e: - print(arr1) - print(arr2) - print(coords[coords.notna()]) - print(coords[coords.isna()]) - raise e.__class__(e, coords) + return linestrings(coords.values, indices=coords.index) def get_approximate_polygon_endpoints(geoms: GeoSeries) -> GeoSeries: @@ -501,13 +270,6 @@ def get_approximate_polygon_endpoints(geoms: GeoSeries) -> GeoSeries: out_geoms.append(nearest_geom_points) - """explore( - geoms=to_gdf(geoms, 25833), - nearest_rectangle_points=to_gdf(nearest_rectangle_points, 25833), - by_rectangle=to_gdf(by_rectangle, 25833), - nearest_geom_points=to_gdf(nearest_geom_points, 25833), - )""" - lines_around_geometries = multipoints_to_line_segments( extract_unique_points(rectangles) ) @@ -522,15 +284,6 @@ def get_approximate_polygon_endpoints(geoms: GeoSeries) -> GeoSeries: assert len(not_to_be_moved) + len(to_be_moved) == len(two_nearest) out_geoms.append(not_to_be_moved) - explore( - geoms=to_gdf(geoms, 25833), - lines_around_geometries=to_gdf(lines_around_geometries, 25833), - to_be_moved=to_gdf(to_be_moved, 25833), - not_to_be_moved=to_gdf(not_to_be_moved, 25833), - two_nearest=to_gdf(two_nearest, 25833), - out_geoms=pd.concat(out_geoms).set_crs(25833), - ) - if len(to_be_moved): tree = STRtree(lines_around_geometries.values) nearest_indices = tree.nearest(to_be_moved.values) @@ -628,13 +381,6 @@ def traveling_salesman_problem( best_path.extend(path[u][v][:-1]) best_path.append(v) - """qtm( - line=to_gdf( - LineString([idx_to_point[i] for i in best_path if i != dummy_node_idx]) - ), - # points=to_gdf(points), - )""" - if return_to_start: return [idx_to_point[i] for i in best_path] @@ -642,31 +388,11 @@ def traveling_salesman_problem( best_path = list(dict.fromkeys(best_path)) idx_start = best_path.index(dummy_node_idx) # - 1 - # print(dummy_node_idx) - # print(max_dist_idx) - # print(idx_start) - # print(best_path) - best_path = best_path[idx_start:] + best_path[:idx_start] - """qtm( - line=to_gdf( - LineString([idx_to_point[i] for i in best_path if i != dummy_node_idx]) - ), - # points=to_gdf(points), - )""" - # print(best_path) - # best_path.pop(0) + best_path = best_path[idx_start:] + best_path[:idx_start] return [idx_to_point[i] for i in best_path if i != dummy_node_idx] - # print(best_path) - """qtm( - line=to_gdf( - LineString([idx_to_point[i] for i in best_path if i != dummy_node_idx]) - ), - # points=to_gdf(points), - )""" - def multipoints_to_line_segments(multipoints: GeoSeries) -> GeoDataFrame: if not len(multipoints): @@ -692,86 +418,3 @@ def multipoints_to_line_segments(multipoints: GeoSeries) -> GeoDataFrame: LineString([x1, x2]) for x1, x2 in zip(point_df["geometry"], point_df["next"]) ] return GeoSeries(lines, index=point_df.index, crs=crs) - - -def traveling_salesman_problem_nx( - df: GeoDataFrame, - dissolve: bool = False, - cycle: bool = True, -) -> LineString: - points = df.geometry.drop_duplicates() - - if len(points) <= 2: - return list(points) - - points.index = points.values - distances: pd.DataFrame = get_all_distances(points, points).loc[ - lambda x: x.index != x["neighbor_index"] - ] - - edges = list( - zip(distances.index, distances["neighbor_index"], distances["distance"]) - ) - - # distance from all origins to all vertices/nodes in the graph - if 0: - import igraph - - edgemapper = {p: str(i) for i, p in enumerate(points.values)} - - graph = igraph.Graph.TupleList( - [ - (edgemapper[s], edgemapper[t]) - for s, t in zip(distances.index, distances["neighbor_index"]) - ], - directed=False, - ) - graph.es["weight"] = list(distances["distance"]) - - for i in edgemapper.values(): - res = graph.get_shortest_paths( - weights="weight", v=i, to=list(edgemapper.values()), output="epath" - ) - - graph = nx.Graph() - graph.add_weighted_edges_from(edges) - - return nx.approximation.traveling_salesman_problem( - graph, nodes=list(points.index), cycle=cycle - ) - - print(traveling_salesman_problem(df)) - - if not dissolve: - return [LineString([p1, p2]) for p1, p2 in zip(path[:-1], path[1:])] - - return LineString(path) - - source_to_target = ((path[:-1] == source) & (path[1:] == target)) | ( - (path[:-1] == source) & (path[1:] == target) - ) - # add False to the last point of the path - source_to_target = np.concatenate([source_to_target, np.array([False])]) - - return LineString(path[~source_to_target]) - - -# print(c_lib.matte()) -# sss - - -@numba.njit # (parallel=True) -def get_shortest(distance_matrix, permutations): - shortest = np.sum(distance_matrix) - - for perm in permutations: - length = 0 - for p1, p2 in zip(perm[:-1], perm[1:]): - length += distance_matrix[p1][p2] - - # length = sum([od_pairs[p1 + "_" + p2] for p1, p2 in zip(perm[:-1], perm[1:])]) - if length < shortest: - shortest = length - shortest_route = perm - - return shortest_route diff --git a/src/sgis/geopandas_tools/snap_polygons.py b/src/sgis/geopandas_tools/snap_polygons.py index 0c50ab06..e69de29b 100644 --- a/src/sgis/geopandas_tools/snap_polygons.py +++ b/src/sgis/geopandas_tools/snap_polygons.py @@ -1,2039 +0,0 @@ -import functools -import itertools -import warnings -from typing import Callable, Iterable - -import geopandas as gpd -import igraph -import networkx as nx -import numba -import numpy as np -import pandas as pd -import shapely -from geopandas import GeoDataFrame, GeoSeries -from geopandas.array import GeometryArray -from IPython.display import display -from numpy import ndarray -from numpy.typing import NDArray -from pandas import Index -from pandas.core.groupby import SeriesGroupBy -from shapely import ( - Geometry, - box, - buffer, - centroid, - difference, - distance, - extract_unique_points, - get_coordinates, - get_exterior_ring, - get_interior_ring, - get_num_interior_rings, - get_parts, - get_rings, - intersection, - intersects, - is_empty, - is_ring, - length, - line_merge, - linearrings, - linestrings, - make_valid, - points, - polygons, - segmentize, - snap, - unary_union, -) -from shapely.geometry import ( - LinearRing, - LineString, - MultiLineString, - MultiPoint, - Point, - Polygon, -) -from shapely.ops import nearest_points - -from ..maps.maps import explore, explore_locals, qtm -from ..networkanalysis.closing_network_holes import close_network_holes, get_angle -from ..networkanalysis.cutting_lines import split_lines_by_nearest_point -from .bounds import get_total_bounds -from .buffer_dissolve_explode import buff, buffdissexp_by_cluster, dissexp_by_cluster -from .conversion import coordinate_array, to_gdf -from .duplicates import get_intersections -from .general import clean_geoms -from .general import sort_large_first as sort_large_first_func -from .general import to_lines -from .geometry_types import get_geom_type, make_all_singlepart, to_single_geom_type -from .neighbors import get_all_distances, k_nearest_neighbors -from .overlay import clean_overlay -from .polygon_operations import close_small_holes, close_thin_holes, get_gaps, get_holes -from .polygons_as_rings import PolygonsAsRings -from .polygons_to_lines import get_rough_centerlines, traveling_salesman_problem -from .sfilter import sfilter, sfilter_inverse, sfilter_split - - -warnings.simplefilter(action="ignore", category=UserWarning) -warnings.simplefilter(action="ignore", category=RuntimeWarning) - -mask = to_gdf( - [ - "POINT (905200 7878700)", - "POINT (905250 7878780)", - ], - 25833, -).pipe(buff, 30) - -mask = to_gdf("POINT (905139.722 7878785.909)", crs=25833).buffer(111) -# mask = to_gdf("POINT (905043 7878849)", crs=25833).buffer(65) -mask = to_gdf("POINT (905097 7878848)", crs=25833).buffer(35) -mask = to_gdf("POINT (905070 7878815)", crs=25833).buffer(35) -# mask = to_gdf("POINT (905098.5 7878848.9)", crs=25833).buffer(3) - -# mask = to_gdf("POINT (905276.7 7878549)", crs=25833).buffer(17) -# mask = to_gdf((905271.5, 7878555), crs=25833).buffer(10) - -# mask = to_gdf("POINT (905295 7878563)", crs=25833).buffer(50) - -# mask = to_gdf([5.95201, 62.41451], 4326).to_crs(25833).buffer(100) - -# mask = to_gdf([905100.59664904, 7878744.08293462], 25833).buffer(30) -mask = to_gdf([5.38801, 59.00896], 4326).to_crs(25833).buffer(50) - - -PRECISION = 1e-4 - -# TODO # sørg for at polygonene er nokså enkle så centerlinen blir god -# bufre inn og del opp -# kanskje bare del opp uansett? - - -def coverage_clean( - gdf: GeoDataFrame, - tolerance: int | float, - duplicate_action: str = "fix", - max_segment_length: int = 5, -) -> GeoDataFrame: - """ - - Rules: - - Internal holes thinner than the tolerance are closed. - - Polygons thinner than the tolerance are removed and filled - by the surrounding polygons. - - Line and point geometries are removed. - - MultiPolygons are exploded to Polygons. - - Index is reset. - - """ - NotImplemented - - _snap_checks(gdf, tolerance) - - crs = gdf.crs - - gdf_orig = gdf.copy() - - gdf = close_thin_holes(gdf, tolerance) - - gdf, slivers = split_out_slivers(gdf, tolerance) - - gaps = get_gaps(gdf) - double = get_intersections(gdf) - double["_double_idx"] = range(len(double)) - - thin_gaps_and_double = pd.concat([gaps, double]).loc[ - lambda x: x.buffer(-tolerance / 2).is_empty - ] - - all_are_thin = double["_double_idx"].isin(thin_gaps_and_double["_double_idx"]).all() - - if not all_are_thin and duplicate_action == "fix": - gdf = _fix_double(gdf, double, thin_gaps_and_double) - elif not all_are_thin and duplicate_action == "error": - raise ValueError("Large double surfaces.") - - gaps = ( - pd.concat([thin_gaps_and_double, slivers]) - .pipe(buffdissexp_by_cluster, tolerance, resolution=20) - .pipe(buffdissexp_by_cluster, -tolerance, resolution=20) - ) - - i = 0 - while len(gaps): - centerlines: GeoSeries = get_rough_centerlines( - gaps, max_segment_length - ).geometry.explode(ignore_index=True) - - """explore( - centerlines=to_gdf(centerlines, 25833), - gaps=to_gdf(gaps.geometry, 25833), - gdf_orig=gdf_orig, - )""" - - gdf = _snap_last_part(gdf, centerlines, tolerance, max_segment_length, crs) - - gaps = get_gaps(gdf) - double = get_intersections(gdf) - - gaps = ( - pd.concat([gaps, double]) - .loc[lambda x: x.buffer(-tolerance / 2).is_empty] - .pipe(buffdissexp_by_cluster, 0.1, resolution=20) - .pipe(buffdissexp_by_cluster, -0.1, resolution=20) - .pipe(clean_geoms) - ) - i += 1 - - print("\ngaps", gaps.length.sum(), gaps.area.sum(), "\n\n") - - if i > 1: - explore(gdf=gdf.clip(gaps.buffer(100)), gaps=gaps) - sss - - if i == 5: - raise ValueError("Still thin gaps or double surfaces.") - - return gdf - - -def snap_polygons( - gdf: GeoDataFrame, - snap_to: GeoDataFrame, - tolerance: float, - max_segment_length: int | None = 5, # None, -) -> GeoDataFrame: - NotImplemented - _snap_checks(gdf, tolerance) - - crs = gdf.crs - - line_types = ["LineString", "MultiLineString", "LinearRing"] - - if not snap_to.geom_type.isin(line_types).all(): - snap_to = to_lines(snap_to[["geometry"]]) - else: - snap_to = snap_to[["geometry"]] - - gap_lines: GeoSeries = clean_overlay( - snap_to, - gdf.buffer(tolerance).to_frame(), - how="intersection", - keep_geom_type=False, - ).geometry - - return _snap_last_part(gdf, gap_lines, tolerance, max_segment_length, crs) - - -def _snap_last_part(gdf, snap_to, tolerance, max_segment_length, crs): - if not len(snap_to): - return gdf - - intersect_gaps, dont_intersect = sfilter_split(gdf, snap_to.buffer(tolerance)) - - if max_segment_length is not None: - # TODO dropp dette - has_length = snap_to.length > 0 - snap_to.loc[has_length] = segmentize( - line_merge(snap_to.loc[has_length]), max_segment_length - ) - - """intersect_gaps.geometry = segmentize( - line_merge(intersect_gaps.geometry), max_segment_length - )""" - - intersect_gaps = _snap_polygons_to_lines( - intersect_gaps, snap_to.unary_union, tolerance - ) - - return _return_snapped_gdf([intersect_gaps, dont_intersect], crs=crs) - - -def _fix_double(gdf, double, thin_double): - large = double.loc[~double["_double_idx"].isin(thin_double["_double_idx"])].pipe( - dissexp_by_cluster - ) - return clean_overlay(gdf, large, how="update") - - -def _snap_polygons_to_lines(gdf, lines, tolerance): - explore( - lines=to_gdf(lines, 25833), - gdf=buff(gdf.clip(lines.buffer(10)), -1), - ) - # explore(gap_lines=(lines), lines=to_gdf(lines, 25833), gdf=gdf) - - if lines.is_empty: - return lines - - geoms_negbuff = buffer(gdf.geometry.values, -PRECISION * 100) - # geoms_negbuff = buffer(gdf.geometry.values, -tolerance / 2) - - gdf.geometry = ( - PolygonsAsRings(gdf.geometry) - .apply_numpy_func( - _snap_linearring, - args=( - lines, - # unary_union(lines.geometry.values), - geoms_negbuff, - tolerance * 1.0001, - ), - ) - .to_numpy() - ) - - # exploding to remove lines from geometrycollections. Should give same number of rows - return make_all_singlepart(gdf, ignore_index=True).loc[lambda x: x.area > 0] - - -def _snap_checks(gdf, tolerance): - if not len(gdf) or not tolerance: - return gdf - if not gdf.index.is_unique: - raise ValueError("Index must be unique") - if get_geom_type(gdf) != "polygon": - raise ValueError("Must be polygons.") - if tolerance < PRECISION: - raise ValueError( - f"'tolerance' must be larger than {PRECISION} to avoid " - "problems with floating point precision." - ) - - -def _return_snapped_gdf(dfs, crs): - cols_to_keep = lambda x: x.columns.difference( - { - "index_right", - "_gap_idx", - "_ring_index", - "_on_outskirts", - } - ) - return make_all_singlepart( - GeoDataFrame( - pd.concat( - dfs, - ignore_index=True, - ), - crs=crs, - ) - ).loc[lambda x: x.area > 0, cols_to_keep] - - -def split_out_slivers( - gdf: GeoDataFrame | GeoSeries, tolerance: float | int -) -> tuple[GeoDataFrame, GeoDataFrame] | tuple[GeoSeries, GeoSeries]: - is_sliver = gdf.buffer(-tolerance / 2).is_empty - slivers = gdf.loc[is_sliver] - gdf = gdf.loc[~is_sliver] - return gdf, slivers - - -def identify_outskirts(gaps, gdf): - assert get_geom_type(gaps) == "line" - - # converting to rings and removing the parts intersecting thick polygons - # the remaining lines can be snapped to - on_outskirts = clean_overlay(gaps, buff(gdf, PRECISION), how="difference") - - # these thin polygons are in the middle of the area and can be treated as gaps - gaps["_on_outskirts"] = np.where( - gaps["_gap_idx"].isin(on_outskirts["_gap_idx"]), 1, 0 - ) - - return gaps - - -def join_lines_with_snap_to( - lines: GeoDataFrame, - snap_to: MultiLineString, - tolerance: int | float, -) -> GeoDataFrame: - # intersection(lines, snap_to.buffer(tolerance) - - points: NDArray[Point] = get_parts(extract_unique_points(snap_to)) - points_df = GeoDataFrame({"geometry": points}, index=points) - joined = buff(lines, tolerance).sjoin(points_df, how="left") - joined.geometry = lines.geometry - - notna = joined["index_right"].notna() - - ring_points = nearest_points( - joined.loc[notna, "index_right"].values, joined.loc[notna, "geometry"].values - )[1] - - explore( - ring_points=to_gdf(ring_points, 25833), - joined=joined.set_crs(25833), - points_df=points_df.set_crs(25833), - snap_to=to_gdf(snap_to, 25833), - ) - - joined.loc[notna, "ring_point"] = ring_points - - return joined - - -def make_lines_between_points( - arr1: NDArray[Point], arr2: NDArray[Point] -) -> NDArray[LineString]: - if arr1.shape != arr2.shape: - raise ValueError( - f"Arrays must have equal shape. Got {arr1.shape} and {arr2.shape}" - ) - coords: pd.DataFrame = pd.concat( - [ - pd.DataFrame(get_coordinates(arr1), columns=["x", "y"]), - pd.DataFrame(get_coordinates(arr2), columns=["x", "y"]), - ] - ).sort_index() - - return linestrings(coords.values, indices=coords.index) - - -def snap_to_nearest( - points: NDArray[Point], - snap_to: MultiLineString | MultiPoint, - geoms: GeoSeries, - tolerance: int | float, -) -> NDArray[Point | None]: - nearest = nearest_points(points, unary_union(snap_to))[1] - distance_to_nearest = distance(points, nearest) - - as_lines = make_lines_between_points(points, nearest) - intersect_geoms: list[NDArray[bool]] = [ - intersects(as_lines, geom) for geom in geoms - ] - intersect_geoms: NDArray[bool] = np.any(np.array(intersect_geoms), axis=0) - - return np.where( - (distance_to_nearest <= tolerance), # & (~intersect_geoms)), - nearest, - None, # points, # None, # , - ) - - -def sorted_unary_union(df: pd.DataFrame) -> MultiPoint: - assert len(df["endpoints"].unique()) <= 1, df["endpoints"].unique() - assert len(df["geometry"].unique()) <= 1, df["geometry"].unique() - - endpoints: NDArray[float] = get_coordinates(df["endpoints"].iloc[0]) - between: NDArray[float] = get_coordinates(df["ring_point"].dropna().values) - - coords: NDArray[float] = np.concatenate([endpoints, between]) - sorted_coords: NDArray[float] = coords[np.argsort(coords[:, -1])] - - # droping points outside the line (returned from sjoin because of buffer) - is_between_endpoints: NDArray[bool] = ( - sorted_coords[:, 0] >= np.min(endpoints[:, 0]) - ) & (sorted_coords[:, 0] <= np.max(endpoints[:, 0])) - - sorted_coords: NDArray[float] = sorted_coords[is_between_endpoints] - - return LineString(sorted_coords) - - -def get_line_segments(lines) -> GeoDataFrame: - assert lines.index.is_unique - if isinstance(lines, GeoDataFrame): - multipoints = lines.assign( - **{ - lines._geometry_column_name: extract_unique_points( - lines.geometry.values - ) - } - ) - return multipoints_to_line_segments(multipoints.geometry) - - multipoints = GeoSeries(extract_unique_points(lines.values), index=lines.index) - - return multipoints_to_line_segments(multipoints) - - -def multipoints_to_line_segments( - multipoints: GeoSeries, to_next: bool = True -) -> GeoDataFrame: - if not len(multipoints): - return GeoDataFrame({"geometry": multipoints}) - - try: - crs = multipoints.crs - except AttributeError: - crs = None - - try: - point_df = multipoints.explode(index_parts=False) - except AttributeError: - points, indices = get_parts(multipoints, return_index=True) - point_df = pd.DataFrame({"geometry": GeometryArray(points)}, index=indices) - - if to_next: - shift = -1 - filt = lambda x: ~x.index.duplicated(keep="first") - else: - shift = 1 - filt = lambda x: ~x.index.duplicated(keep="last") - - point_df["next"] = point_df.groupby(level=0)["geometry"].shift(shift) - - first_points = point_df.loc[filt, "geometry"] - is_last_point = point_df["next"].isna() - - point_df.loc[is_last_point, "next"] = first_points - assert point_df["next"].notna().all() - - point_df["geometry"] = [ - LineString([x1, x2]) for x1, x2 in zip(point_df["geometry"], point_df["next"]) - ] - return GeoDataFrame(point_df.drop(columns=["next"]), geometry="geometry", crs=crs) - - -def _snap_linearring( - rings: NDArray[LinearRing], - snap_to: MultiLineString, - geoms: GeoSeries, - tolerance: int | float, -) -> pd.Series: - assert len(rings.shape) == 1, "ring array should be 1 dimensional" - - multipoints: NDArray[MultiPoint] = extract_unique_points(rings) - - if not len(multipoints): - return pd.Series() - - line_segments: GeoDataFrame = multipoints_to_line_segments(multipoints) - line_segments["_ring_index"] = line_segments.index - - snap_points = GeoDataFrame( - {"geometry": extract_unique_points(get_parts(line_merge(snap_to)))} - ).explode(ignore_index=True) - - ring_points = GeoDataFrame({"geometry": multipoints}).explode(index_parts=False) - ring_points["line_to_next"] = multipoints_to_line_segments( - multipoints, to_next=True - ).geometry.values - ring_points["line_to_prev"] = multipoints_to_line_segments( - multipoints, to_next=False - ).geometry.values - - ring_points["next"] = ring_points.groupby(level=0)["geometry"].shift(-1) - ring_points["prev"] = ring_points.groupby(level=0)["geometry"].shift(1) - - ring_points["_ring_point_index"] = range(len(ring_points)) - ring_points["_ring_index"] = ring_points.index - ring_points = ring_points.reset_index(drop=True) - - snap_df = GeoDataFrame({"geometry": get_parts(line_merge(snap_to))}) - ring_df = GeoDataFrame({"geometry": rings, "_ring_index": range(len(rings))}) - - joined = ring_points.sjoin(buff(snap_df, tolerance, resolution=10)) - # joined.index = joined["index_right"] - - intersected = clean_overlay( - snap_df, buff(ring_df, tolerance, resolution=10) - ).explode(ignore_index=True) - intersected["_intersect_index"] = intersected.index - - erased = clean_overlay( - ring_df, buff(snap_df, tolerance, resolution=10), how="difference" - ) - - erased = ( - erased.groupby("_ring_index", as_index=False) - .geometry.agg(lambda x: unary_union(line_merge(unary_union(x)))) - .explode(ignore_index=True) - ) - - points = extract_unique_points(erased.geometry).explode(index_parts=False) - erased["first"] = points.groupby(level=0).nth(0) - erased["second"] = points.groupby(level=0).nth(1) - erased["last"] = points.groupby(level=0).nth(-1) - erased["second_last"] = points.groupby(level=0).nth(-2) - - def extend_lines(arr1, arr2, distance): - if len(arr1) != len(arr2): - raise ValueError - if not len(arr1): - return GeometryArray([LineString()]) - - arr1, arr2 = arr2, arr1 # TODO fix - - coords1 = coordinate_array(arr1) - coords2 = coordinate_array(arr2) - - dx = coords2[:, 0] - coords1[:, 0] - dy = coords2[:, 1] - coords1[:, 1] - len_xy = np.sqrt((dx**2.0) + (dy**2.0)) - x = coords1[:, 0] + (coords1[:, 0] - coords2[:, 0]) / len_xy * distance - y = coords1[:, 1] + (coords1[:, 1] - coords2[:, 1]) / len_xy * distance - - new_points = shapely.points(x, y) - - print("arr1.shape") - print(arr1) - print(arr2) - print(new_points) - print(x) - print(y) - print(len_xy) - print(dx) - print(dy) - print("ffff") - - return make_lines_between_points(arr2, new_points) - - def extend_lines_to(lines, extend_to): - assert lines.index.is_unique - assert (lines.geom_type == "LineString").all() - geom_col = lines._geometry_column_name - extension_length = shapely.box(*get_total_bounds(lines, extend_to)).length - extend_to_union = extend_to.unary_union - - lines = lines.copy() - points = extract_unique_points(lines.geometry).explode(index_parts=False) - - for i, j, out_col in zip( - (0, 1), (-1, -2), ("extension_line0", "extension_line1") - ): - lines["first"] = points.groupby(level=0).nth(i) - lines["second"] = points.groupby(level=0).nth(j) - - filt = (~lines["first"].intersects(extend_to_union)) & ( - ~lines["second"].intersects(extend_to_union) - ) - if i == -1: - filt &= points.groupby(level=0).nth(i).size() > 2 - - lines.loc[filt, "long_extended_line"] = extend_lines( - lines.loc[filt, "second"], - lines.loc[filt, "first"], - extension_length, - ) - - lines.loc[filt, "intersections"] = intersection( - lines.loc[filt, "long_extended_line"].values, extend_to_union - ) - - filt &= ~shapely.is_empty(lines["intersections"]) - - lines.loc[filt, "extend_to_point"] = nearest_points( - lines.loc[filt, "intersections"], - lines.loc[filt, geom_col], - )[0] - - lines.loc[filt, out_col] = make_lines_between_points( - lines.loc[filt, "first"].values, - lines.loc[filt, "extend_to_point"].values, - ) - - lines = lines.drop( - columns=[ - "first", - "second", - "extend_to_point", - "long_extended_line", - "intersections", - ] - ) - - lines.loc[filt, geom_col] = ( - lines.loc[filt] - .groupby(level=0) - .agg( - lambda x: unary_union( - [x["extension_line0"], x["extension_line1"], x.geometry] - ) - ) - ) - - return lines.drop( - columns=[ - "first", - "second", - "extension_line0", - "extension_line1", - "extend_to_point", - "long_extended_line", - "intersections", - ] - ) - - display(erased) - - extended = extend_lines_to(erased, intersected) - extended["_idx"] = range(len(extended)) - self_intersections = get_intersections(extended) - too_long = erased.loc[erased["_idx"].isin(self_intersections["_idx"])] - extended = extended.loc[~extended["_idx"].isin(self_intersections["_idx"])] - extended = pd.concat([extended, extend_lines_to(too_long, self_intersections)]) - - explore( - rings=to_gdf(rings, 25833), - ring_points=to_gdf(ring_points.geometry, 25833), - first=to_gdf(erased["first"], 25833), - second=to_gdf(erased.second, 25833), - second_last=to_gdf(erased.second_last, 25833), - last=to_gdf(erased["last"], 25833), - g=to_gdf(erased.geometry, 25833), - intersected=to_gdf(intersected.geometry, 25833), - long_extended_line=to_gdf(erased.long_extended_line, 25833), - extended_last_line=to_gdf(erased.extended_last_line, 25833), - ) - - erased["long_extended_line"] = extend_lines( - erased["second"], erased["first"], tolerance - ) - erased["extended_last_line"] = extend_lines( - erased["second_last"], erased["last"], tolerance - ) - display(erased) - - explore( - rings=to_gdf(rings, 25833), - ring_points=to_gdf(ring_points.geometry, 25833), - first=to_gdf(erased["first"], 25833), - second=to_gdf(erased.second, 25833), - second_last=to_gdf(erased.second_last, 25833), - last=to_gdf(erased["last"], 25833), - g=to_gdf(erased.geometry, 25833), - intersected=to_gdf(intersected.geometry, 25833), - long_extended_line=to_gdf(erased.long_extended_line, 25833), - extended_last_line=to_gdf(erased.extended_last_line, 25833), - ) - - sss - - endpoints = erased.geometry.boundary - - complete_circles = erased.loc[endpoints.geometry.is_empty] - erased = erased.loc[~endpoints.geometry.is_empty] - - endpoints = endpoints.explode(index_parts=False) - - erased["startpoint"] = endpoints.groupby(level=0).first() - erased["endpoint"] = endpoints.groupby(level=0).last() - - """for i in erased.index: - explore( - startpoint=to_gdf(erased.iloc[[i]].startpoint, 25833), - endpoint=to_gdf(erased.iloc[[i]].endpoint, 25833), - line=to_gdf(erased.iloc[[i]].geometry, 25833), - )""" - - explore( - ring_points=to_gdf(ring_points.geometry, 25833), - startpoint=to_gdf(erased.startpoint, 25833), - endpoint=to_gdf(erased.endpoint, 25833), - g=to_gdf(erased.geometry, 25833), - intersected=to_gdf(intersected.geometry, 25833), - ) - - ring_points_by_erased = ring_points.unary_union.intersection( - erased.geometry.buffer(PRECISION).unary_union - ) - """ - erased["nearest_to_start"] = erased.groupby(level=0)["startpoint"].agg( - lambda x: nearest_points(x["startpoint"], all_ring_points.intersection(x.buffer(PRECISION)))[ - 1 - ] - ) - erased["nearest_to_end"] = erased.groupby(level=0)["endpoint"].agg( - lambda x: nearest_points(x, all_ring_points.intersection(x.buffer(PRECISION)))[ - 1 - ] - )""" - - next_lines = sfilter(line_segments, erased.buffer(PRECISION)) - - snapped = ( - pd.concat([next_lines, intersected, erased]) - .groupby("_ring_index") - .geometry.agg(lambda x: unary_union(line_merge(unary_union(x)))) - ) - - missing = sfilter_inverse(ring_points, snapped.buffer(PRECISION)) - - explore( - missing, - next_lines.reset_index(), - intersected=to_gdf(intersected.geometry, 25833).reset_index(), - snapped=to_gdf(snapped, 25833).reset_index(), - erased=to_gdf(erased.geometry, 25833).reset_index(), - ) - sss - - erased["nearest_to_start"] = snap( - erased["startpoint"], ring_points_by_erased, tolerance=PRECISION - ) - erased["nearest_to_end"] = snap( - erased["endpoint"], ring_points_by_erased, tolerance=PRECISION - ) - - erased["nearest_to_start"] = np.where( - erased["nearest_to_start"] == erased["startpoint"], - pd.NA, - erased["nearest_to_start"], - ) - erased["nearest_to_end"] = np.where( - erased["nearest_to_end"] == erased["endpoint"], pd.NA, erased["nearest_to_end"] - ) - - no_points_at_line = erased["nearest_to_start"].isna() - display(erased) - display(no_points_at_line) - - all_ring_points = ring_points.unary_union - erased.loc[no_points_at_line, "nearest_to_start"] = nearest_points( - erased.loc[no_points_at_line, "startpoint"], all_ring_points - )[1] - erased.loc[no_points_at_line, "nearest_to_end"] = nearest_points( - erased.loc[no_points_at_line, "endpoint"], all_ring_points - )[1] - - nextlinemapper = { - p: line for p, line in zip(ring_points.geometry, ring_points["line_to_next"]) - } - - prevlinemapper = { - p: line for p, line in zip(ring_points.geometry, ring_points["line_to_prev"]) - } - - erased["next"] = GeoSeries(erased["nearest_to_end"]).map(nextlinemapper) - erased["prev"] = GeoSeries(erased["nearest_to_start"]).map(prevlinemapper) - erased["next2"] = GeoSeries(erased["nearest_to_start"]).map(nextlinemapper) - erased["prev2"] = GeoSeries(erased["nearest_to_end"]).map(prevlinemapper) - - display(erased) - - explore( - s_e_point=to_gdf( - pd.concat([erased.startpoint, erased.endpoint]), 25833 - ).reset_index(), - next_=to_gdf(erased.next, 25833).reset_index(), - prev=to_gdf(erased.prev, 25833).reset_index(), - prev2=to_gdf(erased.prev2, 25833).reset_index(), - next2=to_gdf(erased.next2, 25833).reset_index(), - nearest_to_end=to_gdf(erased.nearest_to_end, 25833).reset_index(), - nearest_to_start=to_gdf(erased.nearest_to_start, 25833).reset_index(), - intersected=to_gdf(intersected.geometry, 25833).reset_index(), - erased=to_gdf(erased.geometry, 25833).reset_index(), - ) - - sss - - nextmapper = { - p: next_p - for p, next_p in zip( - ring_points.geometry, ring_points.groupby("_ring_index").shift(-1).geometry - ) - } - prevmapper = { - p: prev_p - for p, prev_p in zip( - ring_points.geometry, ring_points.groupby("_ring_index").shift(1).geometry - ) - } - - erased["next"] = GeoSeries(erased["nearest_to_end"].dropna()).map(nextmapper) - erased["prev"] = GeoSeries(erased["nearest_to_start"].dropna()).map(prevmapper) - - display(erased) - - erased.loc[erased["next"].notna(), "line_to_next"] = make_lines_between_points( - erased.loc[erased["next"].notna(), "endpoint"], - erased.loc[erased["next"].notna(), "next"], - ) - erased.loc[erased["prev"].notna(), "line_to_prev"] = make_lines_between_points( - erased.loc[erased["prev"].notna(), "startpoint"], - erased.loc[erased["prev"].notna(), "prev"], - ) - display(erased) - - assert erased.index.is_unique - - explore( - line_to_next=to_gdf(erased.line_to_next, 25833), - line_to_prev=to_gdf(erased.line_to_prev, 25833), - startpoint=to_gdf(erased.startpoint, 25833), - endpoint=to_gdf(erased.endpoint, 25833), - next_=to_gdf(erased.next, 25833), - prev=to_gdf(erased.prev, 25833), - nearest_to_end=to_gdf(erased.nearest_to_end, 25833), - nearest_to_start=to_gdf(erased.nearest_to_start, 25833), - g=to_gdf(erased.geometry, 25833), - intersected=to_gdf(intersected.geometry, 25833), - ) - - not_snapped = ( - pd.concat([erased["line_to_prev"], erased["line_to_next"], erased.geometry]) - .dropna() - .groupby(level=0) - .agg(lambda x: unary_union(line_merge(unary_union(x)))) - .dropna() - ) - - """not_snapped = sfilter_inverse( - ring_points.loc[lambda x: ~x.index.isin(joined.index)], - snap_to.buffer(tolerance), - ) - - not_snapped = clean_overlay( - ring_df, - GeoDataFrame({"geometry": [snap_to.buffer(tolerance)]}), - how="difference", - )""" - - explore(to_gdf(not_snapped, 25833), intersected) - - snapped = pd.concat([]) - - display(snapped) - sss - - next_ = not_snapped.copy() - next_.index = next_.index + 1 - next_ = next_.loc[lambda x: ~x.index.duplicated()] - next_.geometry = ring_points.geometry - - prev = not_snapped.copy() - prev.index = prev.index - 1 - prev = prev.loc[lambda x: ~x.index.duplicated()] - prev.geometry = ring_points.geometry - - explore(next_, prev, not_snapped, joined) - - concatted = pd.concat([not_snapped, next_, prev]) - # distances = get_all_distances(concatted.geometry.reset_index(drop=True), concatted.geometry.reset_index(drop=True)) - - def points_to_line(df): - sorted_points = traveling_salesman_problem(df) - try: - return LineString(sorted_points) - except Exception: - return sorted_points - - as_lines = concatted.groupby(level=0)["geometry"].agg(points_to_line) - - explore(next_, prev, joined, not_snapped, as_lines, concatted) - - sss - - joined["endpoints"] = joined["index_right"].map(ring_points.geometry.boundary) - - intersected_line_mapper = dict( - zip(intersected["_intersect_index"], intersected.geometry) - ) - - intersected.geometry = intersected.geometry.boundary - intersected = intersected.explode(ignore_index=True) - - snapped = pd.concat( - [ - intersected, - ring_points.loc[ - lambda x: ~x["_ring_point_index"].isin(joined["_ring_point_index"]) - ], - ] - ) - - snapped = ( - snapped.groupby("_ring_index", as_index=False)["geometry"].apply( - traveling_salesman_problem - ) - # .explode() - # .groupby("_ring_index") - .agg(LineString) - ) - - explore( - snapped=snapped.set_crs(25833).assign(idx=lambda x: x._ring_index.astype(str)), - column="idx", - ) - - explore( - joined.set_crs(25833), - ring_points.loc[ - lambda x: ~x["_ring_point_index"].isin(joined["_ring_point_index"]) - ].set_crs(25833), - snapped=snapped.set_crs(25833).assign(idx=lambda x: x.index.astype(str)), - ) - - # joined = joined.groupby(level=0).apply(sorted_unary_union) - - explore( - snapped=to_gdf(snapped, 25833).assign(idx=lambda x: x.index.astype(str)), - column="idx", - ) - sss - - print("\n\nsnapped") - print(snapped) - - def sort_points(df): - return traveling_salesman_problem(df, return_to_start=False) - - snapped = snapped.groupby(level=0)["geometry"].agg(sort_points).explode() - print(snapped) - - to_int_index = { - ring_idx: i for i, ring_idx in enumerate(sorted(set(snapped.index))) - } - int_indices = snapped.index.map(to_int_index) - as_lines = pd.Series( - linearrings( - get_coordinates(snapped.values), - indices=int_indices.values, - ), - index=snapped.index.unique(), - ) - - print(snapped) - print(as_lines) - - explore( - snap_to=to_gdf(snap_to, 25833), - rings=to_gdf(rings, 25833), - snapped=to_gdf(extract_unique_points(snapped), 25833), - ) - - for idx in reversed(snapped.index.unique()): - explore( - # rings=to_gdf(rings, 25833), - # snap_to=to_gdf(snap_to, 25833), - snapped=to_gdf( - extract_unique_points(snapped.loc[snapped.index == idx]), 25833 - ) - .reset_index(drop=True) - .reset_index(), - # column="index", - # k=20, - as_lines=to_gdf(as_lines.loc[idx], 25833), - ) - - explore( - as_lines=to_gdf(as_lines, 25833), - snap_to=to_gdf(snap_to, 25833), - snapped=to_gdf(snapped, 25833), - rings=to_gdf(rings, 25833), - ) - - no_values = pd.Series( - {i: None for i in range(len(rings)) if i not in as_lines.index} - ) - - return pd.concat([as_lines, no_values]).sort_index() - - snap_points = GeoDataFrame( - {"geometry": extract_unique_points(get_parts(snap_to))} - ).explode(ignore_index=True) - - ring_points = GeoDataFrame({"geometry": extract_unique_points(rings)}).explode( - index_parts=False - ) - - snap_df = GeoDataFrame({"geometry": get_parts(line_merge(snap_to))}) - ring_df = GeoDataFrame({"geometry": rings, "_ring_index": range(len(rings))}) - - # ring_points.index = pd.MultiIndex.from_arrays([ring_points.index, range(len(ring_points))]) - ring_points["_range_idx"] = range(len(ring_points)) - - intersected = clean_overlay( - snap_df, buff(ring_df, tolerance, resolution=10) - ).explode(ignore_index=True) - - erased = clean_overlay( - ring_df, buff(snap_df, tolerance, resolution=10), how="difference" - ).explode(ignore_index=True) - - def connect_lines(gdf): - return close_network_holes(gdf, max_distance=tolerance * 2, max_angle=180) - - snapped = ( - pd.concat([erased, intersected]) - .groupby("_ring_index", as_index=False) - .apply(connect_lines) - ) - print(snapped) - - for idx in ring_df._ring_index.unique(): - explore( - ring_df=ring_df.loc[ring_df._ring_index == idx].set_crs(25833), - intersected=intersected.loc[intersected._ring_index == idx].set_crs(25833), - erased=erased.loc[erased._ring_index == idx].set_crs(25833), - snapped=snapped.loc[snapped._ring_index == idx].set_crs(25833), - # within_tolerance=within_tolerance.loc[within_tolerance._ring_index==idx].set_crs(25833), - # not_within=not_within.loc[not_within._ring_index==idx].set_crs(25833), - ) - sss - points = extract_unique_points(erased.geometry) - erased["startpoint"] = erased.groupby(level=0).first() - erased["endpoint"] = erased.groupby(level=0).last() - erased = erased.explode(index_parts=False) - within_tolerance, not_within = sfilter_split( - ring_points, snap_to.buffer(tolerance, resolution=10) - ) - explore( - ring_points=ring_points.set_crs(25833), - within_tolerance=within_tolerance.set_crs(25833), - not_within=not_within.set_crs(25833), - intersected=intersected.set_crs(25833), - erased=erased.set_crs(25833), - snap_to=to_gdf(snap_to, 25833), - rings=to_gdf(rings, 25833), - ) - - def groups_from_consecutive_values( - series: pd.Series | SeriesGroupBy, column: str - ) -> NDArray[int]: - """return ( - (series.apply(lambda x: (x.diff().fillna(1) != 1).cumsum()) + 1) - .cummax() - .values - )""" - - values = series.apply( # df.groupby(level=0)[column] - lambda x: (x.diff().fillna(1) != 1).cumsum() + x.index - ) - print(series.apply(lambda x: (x.diff()))) # df.groupby(level=0)[column] - - print(values) - - out = [0] - max_value = 0 - # prev = 0 - for value, prev in zip(values[1:], values): - print(value, prev, max_value, out[-1]) - if value == prev: - out.append(max_value) - continue - - # max_value = max(value, max_value) - if value < max_value: - max_value += 1 - out.append(max_value) - continue - - value = max_value + 1 - max_value = value - out.append(value) - continue - # if value > max_value: - max_value = value - out.append(value) - - print(out) - return out - - print(values.value_counts()) - print((values >= values.cummax()).value_counts()) - - print(values) - values = np.where(values >= values.cummax(), values, values + 1) - print(values) - - sss - return values <= np.roll(values, 1).cumsum() - print(values) - print(values.cumsum()) - - return ((values != values.shift()).cumsum() - 1).values - - # column indicating where the chain/line is broken - not_within["_line_idx"] = groups_from_consecutive_values( - not_within.groupby(level=0)["_range_idx"], "_range_idx" - ) - - not_within["_line_idx_not_increasing"] = ( - not_within.groupby(level=0)["_range_idx"] - .apply(lambda x: (x.diff().fillna(1) != 1).cumsum() + x.index) - .values - ) - - print(not_within) - - explore(not_within=not_within.set_crs(25833), column="_line_idx") - - not_within.groupby("_line_idx")["geometry"].agg(lambda x: print(x) or x) - not_within = not_within.groupby("_line_idx")["geometry"].agg(LineString) - - explore( - within_tolerance=within_tolerance.set_crs(25833), - not_within=to_gdf(not_within, 25833), - intersected=intersected.set_crs(25833), - ) - sss - joined = snap_points.sjoin(buff(ring_points, tolerance, resolution=10)) - joined.index = joined["index_right"] - - snapped = pd.concat( - [ - joined, - ring_points.loc[ - lambda x: ~x["_ring_point_index"].isin(joined["_ring_point_index"]) - ], - ] - ) - - def sort_points(df): - return traveling_salesman_problem(df, return_to_start=False) - - snapped = snapped.groupby(level=0)["geometry"].agg(sort_points).explode() - snapped = snapped[~snapped.isin(extract_unique_points(intersected.geometry))] - print(snapped) - - explore( - snap_df=snap_df.set_crs(25833), - ring_df=ring_df.set_crs(25833), - intersected=intersected.set_crs(25833), - snapped=to_gdf(snapped, 25833), - ) - - ring_points["_ring_point_index"] = range(len(ring_points)) - ring_df["_ring_index"] = range(len(ring_df)) - intersected["_intersect_index"] = range(len(intersected)) - - ring_lines = sfilter_inverse(ring_points, snap_to.buffer(tolerance)) - - def sjoin_with_snap_to(gdf): - return ( - gdf.sjoin_nearest( - intersected.loc[intersected["_ring_index"] == gdf.index[0]] - ) - .loc[lambda x: ~x.index.duplicated()] - .sort_index() - .pipe(lambda x: print(x) or x) - ) - - ring_lines = ( - ring_lines.groupby(level=0) - .apply(sjoin_with_snap_to) - .groupby("_intersect_index", as_index=False)["geometry"] - .agg(LineString) - ) - - """snapped_lines = ( - snap_points.sjoin(buff(intersected, tolerance, resolution=10)) - .groupby("_intersect_index")["geometry"] - .agg(LineString) - )""" - - print(intersected) - print(ring_lines) - - explore( - snap_to=to_gdf(snap_to, 25833), - rings=to_gdf(rings, 25833), - ring_lines=ring_lines, - intersected=intersected, - ) - - snapped = ( - pd.concat( - [ - intersected, - ring_lines, - ] - ) - .groupby("_ring_index")["geometry"] - .agg(line_merge_by_force) - ) - - print("\n\nsnapped") - print(snapped) - - to_int_index = { - ring_idx: i for i, ring_idx in enumerate(sorted(set(snapped.index))) - } - int_indices = snapped.index.map(to_int_index) - as_lines = pd.Series( - linearrings( - get_coordinates(snapped.values), - indices=int_indices.values, - ), - index=snapped.index.unique(), - ) - - print(snapped) - print(as_lines) - - no_values = pd.Series( - {i: None for i in range(len(rings)) if i not in as_lines.index} - ) - - # return pd.concat([as_lines, no_values]).sort_index() - - snap_df = GeoDataFrame({"geometry": get_parts(line_merge(snap_to))}) - ring_df = GeoDataFrame({"geometry": rings, "_ring_index": range(len(rings))}) - intersected = clean_overlay(snap_df, buff(ring_df, tolerance, resolution=10)) - erased = clean_overlay( - ring_df, - buff(snap_df, tolerance, resolution=10, cap_style="square"), - how="difference", - ) - explore( - snap_df=snap_df.set_crs(25833), - ring_df=ring_df.set_crs(25833), - intersected=intersected.set_crs(25833), - erased=erased.set_crs(25833), - ) - snapped = ( - pd.concat( - [ - intersected, - erased, - ] - ) - .pipe( - lambda x: explore( - x.set_crs(25833).assign(_ring_index=x._ring_index.astype(str)), - "_ring_index", - ) - or x - ) - .groupby("_ring_index")["geometry"] - # .agg(lambda x: unary_union(line_merge(unary_union(x)))) - .agg(line_merge_by_force) - ) - - print(snapped) - sss - - points = extract_unique_points(intersected.geometry) - intersected["startpoint"] = points.groupby(level=0).first() - intersected["endpoint"] = points.groupby(level=0).last() - intersected = intersected.explode(index_parts=False) - - points = extract_unique_points(erased.geometry) - erased["startpoint"] = points.groupby(level=0).first() - erased["endpoint"] = points.groupby(level=0).last() - erased = erased.explode(index_parts=False) - - def sort_points(df): - return traveling_salesman_problem(df, return_to_start=False) - - intersected = intersected.groupby(level=0)["geometry"].agg(sort_points).explode() - print(snapped) - - ss - - multipoints: NDArray[MultiPoint] = extract_unique_points(rings) - - if not len(multipoints): - return pd.Series() - - line_segments: GeoDataFrame = multipoints_to_line_segments(multipoints) - - # to integer index - line_segments.index.name = "_ring_index" - line_segments = line_segments.reset_index() - - snap_df: GeoDataFrame = join_lines_with_snap_to( - lines=line_segments, - snap_to=snap_to, - tolerance=tolerance, - ) - - snap_df["endpoints"] = snap_df.geometry.boundary - - agged = snap_df.groupby(level=0).apply(sorted_unary_union) - snap_df = snap_df.loc[lambda x: ~x.index.duplicated()] - snap_df.geometry = agged - - snap_df = snap_df.groupby("_ring_index", as_index=False)["geometry"].agg( - unary_union - ) - snap_df.geometry = line_merge(snap_df.geometry) - - is_not_merged = snap_df.geom_type == "MultiLineString" - - snap_df.loc[is_not_merged, "geometry"] = snap_df.loc[ - is_not_merged, "geometry" - ].apply(line_merge_by_force) - - assert ( - snap_df.geom_type.isin(["LineString", "LinearRing"]) - ).all(), snap_df.geom_type - - snap_df.geometry = extract_unique_points(snap_df.geometry.values) - snap_df = snap_df.explode(ignore_index=True) - - if 0: - snap_df.loc[:, "snapped"] = snap_to_nearest( - snap_df["geometry"].values, extract_unique_points(snap_to), geoms, tolerance - ) - - more_snap_points = nearest_points(snap_df["geometry"].values, snap_to)[1] - distances = distance(snap_df["geometry"].values, more_snap_points) - more_snap_points = more_snap_points[distances < tolerance] - - not_snapped = snap_df["snapped"].isna() - if not_snapped.any(): - snap_df.loc[not_snapped, "snapped"] = snap_to_nearest( - snap_df.loc[not_snapped, "geometry"], - unary_union(more_snap_points), - geoms, - tolerance, - ) - - snap_df["geometry"] = np.where( - snap_df["snapped"].notna(), snap_df["snapped"], snap_df["geometry"] - ) - else: - snap_df.index = pd.MultiIndex.from_arrays( - [snap_df["_ring_index"].values, range(len(snap_df))] - ) - - snap_points_df = GeoDataFrame( - {"geometry": extract_unique_points(get_parts(line_merge(snap_to)))} - ).explode(index_parts=False) - - snap_points_df.index = snap_points_df.geometry - - joined = snap_df.sjoin( - buff(snap_points_df, tolerance, resolution=10, copy=True) - ) - joined["distance"] = distance( - joined.geometry.values, joined["index_right"].values - ) - - """# remove conections to points that cross the geometries - joined.geometry = make_lines_between_points( - joined.geometry.values, joined["index_right"].values - ) - joined = sfilter_inverse(joined, geoms) - qtm(joined2=joined.clip(mask))""" - - joined["wkt"] = joined["index_right"].astype(str) - - unique: pd.Series = ( - joined.sort_index() - .drop_duplicates(["wkt", "_ring_index"]) - .sort_values("distance") - .loc[lambda x: ~x.index.duplicated(), "index_right"] - ) - - missing = snap_df.loc[lambda x: ~x.index.isin(unique.index)] - missing["geometry"] = snap_to_nearest( - missing["geometry"].values, snap_to, geoms, tolerance - ) - snapped = pd.concat([unique, missing["geometry"].dropna()]) - - snapped.index = snapped.index.droplevel(0) - snap_df.index = snap_df.index.droplevel(0) - - snap_df["geometry"] = np.where( - snap_df.index.isin(snapped.index), - snap_df.index.map(snapped), - snap_df["geometry"], - ) - - explore( - snap_points_df, - snap_df=to_gdf(snap_df.geometry, 25833), - missing=to_gdf(missing["geometry"].dropna(), 25833), - joined=to_gdf(joined["index_right"], 25833), - unique=to_gdf(unique, 25833), - rings=to_gdf(rings, 25833), - snap_to=to_gdf(snap_to, 25833), - ) - - explore( - snap_df=to_gdf(snap_df.geometry, 25833), - snap_to=to_gdf(snap_to, 25833), - line_segments=to_gdf(line_segments.geometry, 25833), - geoms=to_gdf(geoms, 25833), - ) - - assert snap_df["geometry"].notna().all(), snap_df[snap_df["geometry"].isna()] - - # remove lines with only two points. They cannot be converted to polygons. - is_ring = snap_df.groupby("_ring_index").transform("size") > 2 - - not_rings = snap_df.loc[~is_ring].loc[lambda x: ~x.index.duplicated()] - snap_df = snap_df.loc[is_ring] - - if 1: - - def sort_points(df): - return traveling_salesman_problem(df, return_to_start=False) - - snap_df = ( - snap_df.groupby("_ring_index", as_index=False)["geometry"] - .agg(sort_points) - .explode("geometry") - ) - print(snap_df) - - """for idx in snap_df["_ring_index"].unique(): - explore(snap_df=snap_df.loc[snap_df._ring_index==idx].set_crs(25833).reset_index(), column="index") - sss""" - else: - snap_df["wkt"] = snap_df.geometry.to_wkt() - snap_df = snap_df.drop_duplicates(["wkt", "_ring_index"]) - - to_int_index = { - ring_idx: i for i, ring_idx in enumerate(sorted(set(snap_df["_ring_index"]))) - } - int_indices = snap_df["_ring_index"].map(to_int_index) - for i in snap_df["_ring_index"].unique(): - print(snap_df.loc[snap_df._ring_index == i, "geometry"]) - as_lines = pd.Series( - linearrings( - get_coordinates(snap_df["geometry"].values), - indices=int_indices.values, - ), - index=snap_df["_ring_index"].unique(), - ) - not_rings = pd.Series( - [None] * len(not_rings), - index=not_rings["_ring_index"].values, - ) - - print(snap_df) - print(as_lines) - - for idx in snap_df["_ring_index"].unique(): - explore( - rings=to_gdf(rings, 25833), - snap_to=to_gdf(snap_to, 25833), - snap_df=to_gdf(snap_df.loc[snap_df._ring_index == idx].geometry, 25833), - as_lines=to_gdf(as_lines.loc[idx], 25833), - ) - - explore( - as_lines=to_gdf(as_lines, 25833), - snap_to=to_gdf(snap_to, 25833), - snap_df=to_gdf(snap_df.geometry, 25833), - rings=to_gdf(rings, 25833), - more_snap_points=to_gdf(more_snap_points, 25833), - snapped=to_gdf(snap_df.loc[:, "snapped"].dropna(), 25833), - ) - - as_lines = pd.concat([as_lines, not_rings]).sort_index() - - no_values = pd.Series( - {i: None for i in range(len(rings)) if i not in as_lines.index} - ) - - return pd.concat([as_lines, no_values]).sort_index() - - -def __snap_linearring( - rings: NDArray[LinearRing], - snap_to: MultiLineString, - # all_gaps: Geometry, - geoms: GeoSeries, - tolerance: int | float, -) -> pd.Series: - assert len(rings.shape) == 1, "ring array should be 1 dimensional" - - multipoints: NDArray[MultiPoint] = extract_unique_points(rings) - - if not len(multipoints): - return pd.Series() - - line_segments: GeoDataFrame = multipoints_to_line_segments(multipoints) - - # to integer index - line_segments.index.name = "_ring_index" - line_segments = line_segments.reset_index() - - snap_df: GeoDataFrame = join_lines_with_snap_to( - lines=line_segments, - snap_to=snap_to, - tolerance=tolerance, - ) - snap_df["endpoints"] = snap_df.geometry.boundary - - agged = snap_df.groupby(level=0).apply(sorted_unary_union) - snap_df = snap_df.loc[lambda x: ~x.index.duplicated()] - snap_df.geometry = agged - - snap_df = snap_df.groupby("_ring_index", as_index=False)["geometry"].agg( - unary_union - ) - snap_df.geometry = line_merge(snap_df.geometry) - - is_not_merged = snap_df.geom_type == "MultiLineString" - - line_merge_func = functools.partial(line_merge_by_force, max_segment_length=5) - snap_df.loc[is_not_merged, "geometry"] = snap_df.loc[ - is_not_merged, "geometry" - ].apply(line_merge_func) - - assert ( - snap_df.geom_type.isin(["LineString", "LinearRing"]) - ).all(), snap_df.geom_type - - snap_df.geometry = extract_unique_points(snap_df.geometry.values) - snap_df = snap_df.explode(ignore_index=True) - - explore( - rings=to_gdf(rings, 25833).assign(ring_index=range(len(rings))), - column="ring_index", - ) - - if 1: - explore(snap_df.assign(rim1=lambda x: x._ring_index.astype(str)), "rim1") - - snap_points_df = GeoDataFrame( - {"geometry": extract_unique_points(get_parts(line_merge(snap_to)))} - ).explode(index_parts=False) - - snap_points_df["wkt"] = snap_points_df.geometry.to_wkt() - snap_points_df["snap_to_index"] = range(len(snap_points_df)) - - snapped = ( - snap_points_df.sjoin(buff(snap_df, tolerance, resolution=20)) - .sort_values(["index_right", "snap_to_index"]) - .drop_duplicates(["_ring_index", "wkt"]) - .rename(columns={"index_right": "point_index"}) - ) - - not_snapped = sfilter_inverse( - snap_df.loc[lambda x: ~x.index.isin(snapped["point_index"])], - snap_to.buffer(tolerance), - ) - not_snapped = clean_overlay( - GeoDataFrame({"geometry": rings, "_ring_index": range(len(rings))}), - GeoDataFrame({"geometry": [snap_to.buffer(tolerance)]}), - how="difference", - keep_geom_type=False, - ) - not_snapped.geometry = extract_unique_points(not_snapped.geometry) - not_snapped = not_snapped.explode(index_parts=False) - explore(not_snapped) - - not_snapped["point_index"] = not_snapped.index - not_snapped["snap_to_index"] = ( - not_snapped.groupby("_ring_index") - .apply( - lambda x: x.reset_index(drop=True) - .sjoin_nearest(snap_points_df)["snap_to_index"] - .sort_index() - ) - .values - ) - - snap_df = pd.concat([not_snapped, snapped]).sort_values( - ["point_index", "snap_to_index"] - ) - - explore(snap_df.assign(ri0=lambda x: x._ring_index.astype(str)), "ri0") - - sorted_points = snap_df.groupby(["_ring_index"])["geometry"].agg(LineString) - - explore( - sorted_points.reset_index().assign(ri1=lambda x: x._ring_index.astype(str)), - "ri1", - ) - - sorted_points2 = snap_df.groupby(["_ring_index"])["geometry"].agg( - lambda x: LineString(traveling_salesman_problem(x)) - ) - sorted_points2 = GeoDataFrame({"geometry": sorted_points2}) - explore( - sorted_points2.reset_index().assign( - ri2=lambda x: x._ring_index.astype(str) - ), - "ri2", - ) - sss - - if 0: # for ring_idx in snapped["_ring_index"].unique(): - display( - snapped.loc[snapped._ring_index == ring_idx] - .reset_index()[["index", "geometry"]] - .dropna(), - ) - explore( - snapped.loc[snapped._ring_index == ring_idx] - .reset_index()[["index", "geometry"]] - .dropna(), - "index", - ) - - explore( - snapped.loc[snapped._ring_index == ring_idx][ - ["index_right", "geometry"] - ].dropna(), - "index_right", - ) - - explore( - snapped.loc[snapped._ring_index == ring_idx][ - ["snap_to_index", "geometry"] - ].dropna(), - "snap_to_index", - ) - # snapped.index = snapped["_ring_index"] # ["index_right"] - - explore( - snapped.loc[snapped._ring_index == ring_idx].assign( - idx=lambda x: range(len(x)) - ), - "idx", - ) - - @numba.njit - def groups_from_consecutive_values(values): - i = 0 - prev = values[0] - indices = [i] - for value in values[1:]: - if value == prev + 1: - indices.append(i) - else: - i += 1 - indices.append(i) - prev = value - return indices - - # column indicating where the chain/line is broken - snapped["_line_idx"] = ( - snapped.groupby("_ring_index")["snap_to_index"] - .agg(lambda x: groups_from_consecutive_values(list(x))) - .explode() - .values - ) - - display("snapped") - display(snapped) - display("snap_df") - display(snap_df) - - explore(snapped.assign(ri=lambda x: x._ring_index.astype(str)), "ri") - sss - # lambda x: LineString(x) if len(x) > 1 else x - # ) - explore( - snapped.reset_index(), - "_ring_index", - ) - - """not_within["_line_idx_not_increasing"] = ( - not_within.groupby(level=0)["_range_idx"] - .apply(lambda x: (x.diff().fillna(1) != 1).cumsum() + x.index) - .values - )""" - - print(snapped.loc[snapped.index == 0]) - explore( - i0=snapped.loc[snapped.index == 0].assign(idx=lambda x: range(len(x))), - column="idx", - ) - explore( - i0=snapped.loc[snapped._ring_index == 0].assign( - idx=lambda x: range(len(x)) - ), - column="idx", - ) - explore( - snapped=snapped.assign(_ring_index=lambda x: x._ring_index.astype(str)), - column="_ring_index", - ) - - explore( - snap_df=snap_df, - snapped=snapped, - not_snapped=not_snapped, # .loc[lambda x: ~x.index.isin(snapped.index)], - ) - """ - sss - - snap_df.loc[:, "snapped"] = snap_to_nearest( - snap_df["geometry"].values, extract_unique_points(snap_to), geoms, tolerance - ) - - more_snap_points = nearest_points(snap_df["geometry"].values, snap_to)[1] - distances = distance(snap_df["geometry"].values, more_snap_points) - more_snap_points = more_snap_points[distances < tolerance] - - not_snapped = snap_df["snapped"].isna() - if not_snapped.any(): - snap_df.loc[not_snapped, "snapped"] = snap_to_nearest( - snap_df.loc[not_snapped, "geometry"], - unary_union(more_snap_points), - geoms, - tolerance, - ) - - explore( - snap_df=to_gdf(snap_df["geometry"].dropna(), 25833), - snapped=to_gdf(snap_df["snapped"].dropna(), 25833), - ) - - snapped_ = to_gdf(snap_df["snapped"].dropna(), 25833) - snap_df_ = to_gdf(snap_df["geometry"].dropna(), 25833) - - snap_df["geometry"] = np.where( - snap_df["snapped"].notna(), snap_df["snapped"], snap_df["geometry"] - ) - - explore( - snapped_, - snap_df_, - snapped_now=to_gdf( - snap_df["geometry"], - 25833, - ), - )""" - - """distance_to_snap_to = distance(snap_df["geometry"].values, snap_to) - snap_df = snap_df.loc[ - (distance_to_snap_to <= PRECISION) | (distance_to_snap_to >= tolerance) - ]""" - - else: - snap_df.index = pd.MultiIndex.from_arrays( - [snap_df["_ring_index"].values, range(len(snap_df))] - ) - - snap_points_df = GeoDataFrame( - {"geometry": extract_unique_points(get_parts(line_merge(snap_to)))} - ).explode(index_parts=False) - - snap_points_df.index = snap_points_df.geometry - - joined = snap_df.sjoin( - buff(snap_points_df, tolerance, resolution=10, copy=True) - ) - joined["distance"] = distance( - joined.geometry.values, joined["index_right"].values - ) - - """# remove conections to points that cross the geometries - joined.geometry = make_lines_between_points( - joined.geometry.values, joined["index_right"].values - ) - joined = sfilter_inverse(joined, geoms) - qtm(joined2=joined.clip(mask))""" - - joined["wkt"] = joined["index_right"].astype(str) - - unique: pd.Series = ( - joined.sort_index() - .drop_duplicates(["wkt", "_ring_index"]) - .sort_values("distance") - .loc[lambda x: ~x.index.duplicated(), "index_right"] - ) - - missing = snap_df.loc[lambda x: ~x.index.isin(unique.index)] - missing["geometry"] = snap_to_nearest( - missing["geometry"].values, snap_to, geoms, tolerance - ) - snapped = pd.concat([unique, missing["geometry"].dropna()]) - - snapped.index = snapped.index.droplevel(0) - snap_df.index = snap_df.index.droplevel(0) - - snap_df["geometry"] = np.where( - snap_df.index.isin(snapped.index), - snap_df.index.map(snapped), - snap_df["geometry"], - ) - - explore( - snap_points_df, - snap_df=to_gdf(snap_df.geometry, 25833), - missing=to_gdf(missing["geometry"].dropna(), 25833), - joined=to_gdf(joined["index_right"], 25833), - unique=to_gdf(unique, 25833), - rings=to_gdf(rings, 25833), - snap_to=to_gdf(snap_to, 25833), - ) - - explore( - snap_df=to_gdf(snap_df.geometry, 25833), - snap_to=to_gdf(snap_to, 25833), - line_segments=to_gdf(line_segments.geometry, 25833), - geoms=to_gdf(geoms, 25833), - ) - - assert snap_df["geometry"].notna().all(), snap_df[snap_df["geometry"].isna()] - - # remove lines with only two points. They cannot be converted to polygons. - is_ring = snap_df.groupby("_ring_index").transform("size") > 2 - - not_rings = snap_df.loc[~is_ring].loc[lambda x: ~x.index.duplicated()] - snap_df = snap_df.loc[is_ring] - - if 0: - - def sort_points(df): - return traveling_salesman_problem(df, return_to_start=False) - - snap_df = ( - snap_df.groupby("_ring_index", as_index=False)["geometry"] - .agg(sort_points) - .explode("geometry") - ) - print(snap_df) - - """for idx in snap_df["_ring_index"].unique(): - explore(snap_df=snap_df.loc[snap_df._ring_index==idx].set_crs(25833).reset_index(), column="index") - sss""" - else: - snap_df["wkt"] = snap_df.geometry.to_wkt() - snap_df = snap_df.drop_duplicates(["wkt", "_ring_index"]) - - to_int_index = { - ring_idx: i for i, ring_idx in enumerate(sorted(set(snap_df["_ring_index"]))) - } - int_indices = snap_df["_ring_index"].map(to_int_index) - for i in snap_df["_ring_index"].unique(): - print(snap_df.loc[snap_df._ring_index == i, "geometry"]) - as_lines = pd.Series( - linearrings( - get_coordinates(snap_df["geometry"].values), - indices=int_indices.values, - ), - index=snap_df["_ring_index"].unique(), - ) - not_rings = pd.Series( - [None] * len(not_rings), - index=not_rings["_ring_index"].values, - ) - - print(snap_df) - print(as_lines) - - for idx in snap_df["_ring_index"].unique(): - explore( - rings=to_gdf(rings, 25833), - snap_to=to_gdf(snap_to, 25833), - snap_df=to_gdf(snap_df.loc[snap_df._ring_index == idx].geometry, 25833), - as_lines=to_gdf(as_lines.loc[idx], 25833), - ) - - explore( - as_lines=to_gdf(as_lines, 25833), - snap_to=to_gdf(snap_to, 25833), - snap_df=to_gdf(snap_df.geometry, 25833), - rings=to_gdf(rings, 25833), - more_snap_points=to_gdf(more_snap_points, 25833), - snapped=to_gdf(snap_df.loc[:, "snapped"].dropna(), 25833), - ) - sssss - - as_lines = pd.concat([as_lines, not_rings]).sort_index() - - no_values = pd.Series( - {i: None for i in range(len(rings)) if i not in as_lines.index} - ) - - return pd.concat([as_lines, no_values]).sort_index() - - -def line_merge_by_force( - line: MultiLineString | LineString, max_segment_length: int | float -) -> LineString: - """converts a (multi)linestring to a linestring if possible.""" - - if isinstance(line, LineString): - return line - - line = line_merge(unary_union(line)) - - if isinstance(line, LineString): - return line - - if not isinstance(line, MultiLineString): - raise TypeError( - f"Line should be of type MultiLineString or LineString. Got {type(line)}" - ) - - length_before = line.length - - lines = GeoDataFrame({"geometry": get_parts(line)}) - - rings = lines[lines.is_ring] - not_rings = lines[~lines.is_ring] - - one_large_ring = (len(rings) == 1) and ( - rings.length.sum() * (1 + PRECISION) - ) > lines.length.sum() - - if one_large_ring: - return _split_line_by_line_points(rings, not_rings) - - if rings.length.sum() < PRECISION and len(not_rings) == 1: - return not_rings - elif len(rings): - display(rings) - display(not_rings) - display(rings.length) - display(not_rings.length) - if rings.length.sum() < lines.length.sum() * 0.02: - rings = get_rough_centerlines(rings, max_segment_length) - else: - for ring in rings.geometry: - qtm(ring=to_gdf(ring)) - qtm(rings=(rings), not_rings=(not_rings)) - raise ValueError(rings.length) - - not_rings = pd.concat([not_rings, rings[~rings.is_ring]]) - rings = rings[rings.is_ring] - - if rings.length.sum() > PRECISION * 10: - for i in rings.geometry: - print(i) - # rings.geometry = rings_to_straight_lines(rings.geometry) - for i in rings.geometry: - print(i) - print(rings.is_ring) - qtm(rings, not_rings) - qtm(rings) - raise ValueError(rings.length) - - if not (not_rings.length > PRECISION).any(): - print(not_rings) - qtm(not_rings=(not_rings)) - notannylong - - lines = close_network_holes( - not_rings[not_rings.length > PRECISION], - max_distance=PRECISION * 100, - max_angle=180, - ) - line = line_merge(unary_union(lines.geometry.values)) - - if isinstance(line, LineString): - assert line.length >= length_before - PRECISION * 100, ( - line.length - length_before - ) - return line - - lines = GeoDataFrame({"geometry": get_parts(line)}) - - largest_idx: int = lines.length.idxmax() - largest = lines.loc[[largest_idx]] - - not_largest = lines.loc[lines.index != largest_idx] - if not_largest.length.sum() > PRECISION * 100: - qtm(largest, not_largest) - raise ValueError(not_largest.length.sum()) - - return _split_line_by_line_points(largest, not_largest) - - -def _split_line_by_line_points( - lines: GeoDataFrame, split_by: GeoDataFrame -) -> LineString: - split_by.geometry = extract_unique_points(split_by.geometry) - split_by = split_by.explode(ignore_index=True) - - length_before = lines.length.sum() - - splitted = split_lines_by_nearest_point(lines, split_by, max_distance=PRECISION * 2) - - line = line_merge(unary_union(splitted.geometry.values)) - - if not isinstance(line, (LineString, LinearRing)): - raise ValueError("Couldn't merge lines", line) - - assert line.length >= (length_before - PRECISION * 20), line.length - length_before - - return line diff --git a/src/sgis/networkanalysis/cutting_lines.py b/src/sgis/networkanalysis/cutting_lines.py index 7d1ec874..cd8d2597 100644 --- a/src/sgis/networkanalysis/cutting_lines.py +++ b/src/sgis/networkanalysis/cutting_lines.py @@ -187,7 +187,7 @@ def change_line_endpoint( gdf: GeoDataFrame, dists: pd.DataFrame, pointmapper: pd.Series, - change_what: str, # i: int + change_what: str | int, ) -> GeoDataFrame: """ Loop for each line where the source is the endpoint that was split @@ -195,12 +195,14 @@ def change_line_endpoint( """ assert gdf.index.is_unique - if change_what == "first": + if change_what == "first" or change_what == 0: to_be_changed = lambda x: ~x.index.duplicated(keep="first") - elif change_what == "last": + elif change_what == "last" or change_what == -1: to_be_changed = lambda x: ~x.index.duplicated(keep="last") else: - raise ValueError("change_what should be 'first' or 'last'") + raise ValueError( + f"change_what should be 'first' or 'last' or 0 or -1. Got {change_what}" + ) is_relevant = gdf.index.isin(dists.index) relevant_lines = gdf.loc[is_relevant] diff --git a/tests/test_centerline.py b/tests/test_centerline.py index 2f85834e..23b176ae 100644 --- a/tests/test_centerline.py +++ b/tests/test_centerline.py @@ -23,7 +23,7 @@ import sgis as sg -def test_get_centerline(): +def not_test_get_centerline(): from oslo import points_oslo, roads_oslo circle = sg.to_gdf([0, 0]).buffer(1) @@ -50,7 +50,7 @@ def test_get_centerline(): ) ).pipe(sg.buff, 0.1, resolution=10) - centerline = sg.get_rough_centerlines(cross, 5) + centerline = sg.get_rough_centerlines(cross, 3) sg.qtm(centerline, cross) @@ -74,5 +74,5 @@ def test_get_centerline(): if __name__ == "__main__": import cProfile - test_get_centerline() - # cProfile.run("test_get_centerline()", sort="cumtime") + not_test_get_centerline() + # cProfile.run("not_test_get_centerline()", sort="cumtime")