diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index ab88f14e..32b3eab5 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -9,7 +9,7 @@ repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.4.0 + rev: v4.5.0 hooks: - id: check-added-large-files # prevents giant files from being committed. - id: check-case-conflict # checks for files that would conflict in case-insensitive filesystems. @@ -22,18 +22,18 @@ repos: - id: trailing-whitespace # trims trailing whitespace. - repo: https://github.com/pre-commit/mirrors-prettier - rev: v3.0.0-alpha.6 + rev: v3.0.3 hooks: - id: prettier files: \.(json|markdown|md|yaml|yml)$ - repo: https://github.com/hadialqattan/pycln - rev: v2.1.3 + rev: v2.3.0 hooks: - id: pycln - repo: https://github.com/psf/black - rev: 23.3.0 + rev: 23.11.0 hooks: - id: black @@ -41,7 +41,7 @@ repos: rev: 5.12.0 hooks: - id: isort - args: [--profile=black] + args: ["--profile=black", "--magic-placement"] - repo: https://github.com/sqlfluff/sqlfluff rev: 2.0.3 diff --git a/airflow_variables_dev.json b/airflow_variables_dev.json index d2a0f1d7..2ec0c537 100644 --- a/airflow_variables_dev.json +++ b/airflow_variables_dev.json @@ -94,7 +94,7 @@ "partnership_assets__account_holders_activity_fact": true, "partnership_assets__asset_activity_fact": true }, - "dbt_image_name": "stellar/stellar-dbt:011d897", + "dbt_image_name": "stellar/stellar-dbt:2ef9be7", "dbt_job_execution_timeout_seconds": 300, "dbt_job_retries": 1, "dbt_keyfile_profile": "", @@ -307,5 +307,6 @@ "columns_ohlc_currency": ["time", "open", "high", "low", "close"] }, "currency_bucket": "currencies_ohlc", + "max_db_entry_age_in_days": 90, "public_dbt_image_name": "stellar/stellar-dbt:671afb6" } diff --git a/airflow_variables_prod.json b/airflow_variables_prod.json index dbd3159b..8b5cb96e 100644 --- a/airflow_variables_prod.json +++ b/airflow_variables_prod.json @@ -116,7 +116,7 @@ "partnership_assets__asset_activity_fact": false, "trade_agg": false }, - "dbt_image_name": "stellar/stellar-dbt:011d897", + "dbt_image_name": "stellar/stellar-dbt:2ef9be7", "dbt_job_execution_timeout_seconds": 6000, "dbt_job_retries": 1, "dbt_keyfile_profile": "", @@ -327,5 +327,6 @@ "columns_ohlc_currency": ["time", "open", "high", "low", "close"] }, "currency_bucket": "ext-asset-pricing", + "max_db_entry_age_in_days": 180, "public_dbt_image_name": "stellar/stellar-dbt:671afb6" } diff --git a/dags/cleanup_metadata_dag.py b/dags/cleanup_metadata_dag.py new file mode 100644 index 00000000..74859975 --- /dev/null +++ b/dags/cleanup_metadata_dag.py @@ -0,0 +1,470 @@ +""" +A maintenance workflow that you can deploy into Airflow to periodically clean +out the DagRun, TaskInstance, Log, XCom, Job DB and SlaMiss entries to avoid +having too much data in your Airflow MetaStore. +""" +import logging +from datetime import timedelta + +import airflow +import dateutil.parser +from airflow import settings +from airflow.models import ( + DAG, + DagModel, + DagRun, + Log, + SlaMiss, + TaskInstance, + Variable, + XCom, +) +from airflow.operators.python import PythonOperator +from airflow.utils import timezone +from airflow.version import version as airflow_version +from sqlalchemy import and_, func, text +from sqlalchemy.exc import ProgrammingError +from sqlalchemy.orm import load_only +from stellar_etl_airflow.default import ( + alert_after_max_retries, + get_default_dag_args, + init_sentry, +) + +init_sentry() + +now = timezone.utcnow + +START_DATE = airflow.utils.dates.days_ago(1) +# Airflow version used by the environment in list form, value stored in +# airflow_version is in format e.g "2.3.4+composer" +AIRFLOW_VERSION = airflow_version[: -len("+composer")].split(".") +# Length to retain the log files if not already provided in the conf. If this +# is set to 30, the job will remove those files that arE 30 days old or older. +DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS = int(Variable.get("max_db_entry_age_in_days", 30)) +# Prints the database entries which will be getting deleted; set to False +# to avoid printing large lists and slowdown process +PRINT_DELETES = False +# Whether the job should delete the db entries or not. Included if you want to +# temporarily avoid deleting the db entries. +ENABLE_DELETE = True +# List of all the objects that will be deleted. Comment out the DB objects you +# want to skip. +DATABASE_OBJECTS = [ + { + "airflow_db_model": DagRun, + "age_check_column": DagRun.execution_date, + "keep_last": True, + "keep_last_filters": [DagRun.external_trigger.is_(False)], + "keep_last_group_by": DagRun.dag_id, + }, + { + "airflow_db_model": TaskInstance, + "age_check_column": TaskInstance.execution_date + if AIRFLOW_VERSION < ["2", "2", "0"] + else TaskInstance.start_date, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + }, + { + "airflow_db_model": Log, + "age_check_column": Log.dttm, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + }, + { + "airflow_db_model": XCom, + "age_check_column": XCom.execution_date + if AIRFLOW_VERSION < ["2", "2", "5"] + else XCom.timestamp, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + }, + { + "airflow_db_model": SlaMiss, + "age_check_column": SlaMiss.execution_date, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + }, + { + "airflow_db_model": DagModel, + "age_check_column": DagModel.last_parsed_time, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + }, +] + +# Check for TaskReschedule model +try: + from airflow.models import TaskReschedule + + DATABASE_OBJECTS.append( + { + "airflow_db_model": TaskReschedule, + "age_check_column": TaskReschedule.execution_date + if AIRFLOW_VERSION < ["2", "2", "0"] + else TaskReschedule.start_date, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + } + ) + +except Exception as e: + logging.error(e) + +# Check for TaskFail model +try: + from airflow.models import TaskFail + + DATABASE_OBJECTS.append( + { + "airflow_db_model": TaskFail, + "age_check_column": TaskFail.execution_date, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + } + ) + +except Exception as e: + logging.error(e) + +# Check for RenderedTaskInstanceFields model +if AIRFLOW_VERSION < ["2", "4", "0"]: + try: + from airflow.models import RenderedTaskInstanceFields + + DATABASE_OBJECTS.append( + { + "airflow_db_model": RenderedTaskInstanceFields, + "age_check_column": RenderedTaskInstanceFields.run_id, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + } + ) + + except Exception as e: + logging.error(e) + +# Check for ImportError model +try: + from airflow.models import ImportError + + DATABASE_OBJECTS.append( + { + "airflow_db_model": ImportError, + "age_check_column": ImportError.timestamp, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + "do_not_delete_by_dag_id": True, + } + ) + +except Exception as e: + logging.error(e) + +if AIRFLOW_VERSION < ["2", "6", "0"]: + try: + from airflow.jobs.base_job import BaseJob + + DATABASE_OBJECTS.append( + { + "airflow_db_model": BaseJob, + "age_check_column": BaseJob.latest_heartbeat, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + } + ) + except Exception as e: + logging.error(e) +else: + try: + from airflow.jobs.job import Job + + DATABASE_OBJECTS.append( + { + "airflow_db_model": Job, + "age_check_column": Job.latest_heartbeat, + "keep_last": False, + "keep_last_filters": None, + "keep_last_group_by": None, + } + ) + except Exception as e: + logging.error(e) + +dag = DAG( + "cleanup_metadata_dag", + default_args=get_default_dag_args(), + schedule_interval="@daily", + start_date=START_DATE, +) +if hasattr(dag, "doc_md"): + dag.doc_md = __doc__ +if hasattr(dag, "catchup"): + dag.catchup = False + + +def print_configuration_function(**context): + logging.info("Loading Configurations...") + dag_run_conf = context.get("dag_run").conf + logging.info("dag_run.conf: " + str(dag_run_conf)) + max_db_entry_age_in_days = None + if dag_run_conf: + max_db_entry_age_in_days = dag_run_conf.get("maxDBEntryAgeInDays", None) + logging.info("maxDBEntryAgeInDays from dag_run.conf: " + str(dag_run_conf)) + if max_db_entry_age_in_days is None or max_db_entry_age_in_days < 1: + logging.info( + "maxDBEntryAgeInDays conf variable isn't included or Variable " + + "value is less than 1. Using Default '" + + str(DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS) + + "'" + ) + max_db_entry_age_in_days = DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS + max_date = now() + timedelta(-max_db_entry_age_in_days) + logging.info("Finished Loading Configurations") + logging.info("") + + logging.info("Configurations:") + logging.info("max_db_entry_age_in_days: " + str(max_db_entry_age_in_days)) + logging.info("max_date: " + str(max_date)) + logging.info("enable_delete: " + str(ENABLE_DELETE)) + logging.info("") + + logging.info("Setting max_execution_date to XCom for Downstream Processes") + context["ti"].xcom_push(key="max_date", value=max_date.isoformat()) + + +print_configuration = PythonOperator( + task_id="print_configuration", + python_callable=print_configuration_function, + provide_context=True, + dag=dag, +) + + +def build_query( + session, + airflow_db_model, + age_check_column, + max_date, + keep_last, + keep_last_filters=None, + keep_last_group_by=None, +): + query = session.query(airflow_db_model).options(load_only(age_check_column)) + + logging.info("INITIAL QUERY : " + str(query)) + + if not keep_last: + query = query.filter( + age_check_column <= max_date, + ) + else: + subquery = session.query(func.max(DagRun.execution_date)) + # workaround for MySQL "table specified twice" issue + # https://github.com/teamclairvoyant/airflow-maintenance-dags/issues/41 + if keep_last_filters is not None: + for entry in keep_last_filters: + subquery = subquery.filter(entry) + + logging.info("SUB QUERY [keep_last_filters]: " + str(subquery)) + + if keep_last_group_by is not None: + subquery = subquery.group_by(keep_last_group_by) + logging.info("SUB QUERY [keep_last_group_by]: " + str(subquery)) + + subquery = subquery.from_self() + + query = query.filter( + and_(age_check_column.notin_(subquery)), and_(age_check_column <= max_date) + ) + + return query + + +def print_query(query, airflow_db_model, age_check_column): + entries_to_delete = query.all() + + logging.info("Query: " + str(query)) + logging.info( + "Process will be Deleting the following " + + str(airflow_db_model.__name__) + + "(s):" + ) + for entry in entries_to_delete: + date = str(entry.__dict__[str(age_check_column).split(".")[1]]) + logging.info("\tEntry: " + str(entry) + ", Date: " + date) + + logging.info( + "Process will be Deleting " + + str(len(entries_to_delete)) + + " " + + str(airflow_db_model.__name__) + + "(s)" + ) + + +def cleanup_function(**context): + session = settings.Session() + + logging.info("Retrieving max_execution_date from XCom") + max_date = context["ti"].xcom_pull( + task_ids=print_configuration.task_id, key="max_date" + ) + max_date = dateutil.parser.parse(max_date) # stored as iso8601 str in xcom + + airflow_db_model = context["params"].get("airflow_db_model") + state = context["params"].get("state") + age_check_column = context["params"].get("age_check_column") + keep_last = context["params"].get("keep_last") + keep_last_filters = context["params"].get("keep_last_filters") + keep_last_group_by = context["params"].get("keep_last_group_by") + + logging.info("Configurations:") + logging.info("max_date: " + str(max_date)) + logging.info("enable_delete: " + str(ENABLE_DELETE)) + logging.info("session: " + str(session)) + logging.info("airflow_db_model: " + str(airflow_db_model)) + logging.info("state: " + str(state)) + logging.info("age_check_column: " + str(age_check_column)) + logging.info("keep_last: " + str(keep_last)) + logging.info("keep_last_filters: " + str(keep_last_filters)) + logging.info("keep_last_group_by: " + str(keep_last_group_by)) + + logging.info("") + + logging.info("Running Cleanup Process...") + + try: + if context["params"].get("do_not_delete_by_dag_id"): + query = build_query( + session, + airflow_db_model, + age_check_column, + max_date, + keep_last, + keep_last_filters, + keep_last_group_by, + ) + if PRINT_DELETES: + print_query(query, airflow_db_model, age_check_column) + if ENABLE_DELETE: + logging.info("Performing Delete...") + query.delete(synchronize_session=False) + session.commit() + else: + dags = session.query(airflow_db_model.dag_id).distinct() + session.commit() + + list_dags = [str(list(dag)[0]) for dag in dags] + [None] + for dag in list_dags: + query = build_query( + session, + airflow_db_model, + age_check_column, + max_date, + keep_last, + keep_last_filters, + keep_last_group_by, + ) + query = query.filter(airflow_db_model.dag_id == dag) + if PRINT_DELETES: + print_query(query, airflow_db_model, age_check_column) + if ENABLE_DELETE: + logging.info("Performing Delete...") + query.delete(synchronize_session=False) + session.commit() + + if not ENABLE_DELETE: + logging.warn( + "You've opted to skip deleting the db entries. " + "Set ENABLE_DELETE to True to delete entries!!!" + ) + + logging.info("Finished Running Cleanup Process") + + except ProgrammingError as e: + logging.error(e) + logging.error( + str(airflow_db_model) + " is not present in the metadata. " "Skipping..." + ) + + finally: + session.close() + + +def cleanup_sessions(): + session = settings.Session() + + try: + logging.info("Deleting sessions...") + before = len( + session.execute( + text("SELECT * FROM session WHERE expiry < now()::timestamp(0);") + ) + .mappings() + .all() + ) + session.execute(text("DELETE FROM session WHERE expiry < now()::timestamp(0);")) + after = len( + session.execute( + text("SELECT * FROM session WHERE expiry < now()::timestamp(0);") + ) + .mappings() + .all() + ) + logging.info("Deleted {} expired sessions.".format(before - after)) + except Exception as e: + logging.error(e) + + session.commit() + session.close() + + +def analyze_db(): + session = settings.Session() + session.execute("ANALYZE") + session.commit() + session.close() + + +analyze_op = PythonOperator( + task_id="analyze_query", + python_callable=analyze_db, + provide_context=True, + on_failure_callback=alert_after_max_retries, + dag=dag, +) + +cleanup_session_op = PythonOperator( + task_id="cleanup_sessions", + python_callable=cleanup_sessions, + provide_context=True, + on_failure_callback=alert_after_max_retries, + dag=dag, +) + +cleanup_session_op.set_downstream(analyze_op) + +for db_object in DATABASE_OBJECTS: + cleanup_op = PythonOperator( + task_id="cleanup_" + str(db_object["airflow_db_model"].__name__), + python_callable=cleanup_function, + params=db_object, + provide_context=True, + on_failure_callback=alert_after_max_retries, + dag=dag, + ) + + print_configuration.set_downstream(cleanup_op) + cleanup_op.set_downstream(analyze_op)