forked from enormandeau/Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfasta_reservoir_sampling.py
executable file
·79 lines (69 loc) · 2.02 KB
/
fasta_reservoir_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
"""Extract n random sequences from a fasta file.
Usage:
%program <input_file> n <output_file>"""
# Importing modules
import random
import gzip
import sys
import re
# Defining classes
class Fasta(object):
"""Fasta object with name and sequence
"""
def __init__(self, name, sequence):
self.name = name
self.sequence = sequence
def write_to_file(self, handle):
handle.write(">" + self.name + "\n")
handle.write(self.sequence + "\n")
# Defining functions
def myopen(_file, mode="rt"):
if _file.endswith(".gz"):
return gzip.open(_file, mode=mode)
else:
return open(_file, mode=mode)
def fasta_iterator(input_file):
"""Takes a fasta file input_file and returns a fasta iterator
"""
with myopen(input_file) as f:
sequence = ""
name = ""
begun = False
for line in f:
line = line.strip()
if line.startswith(">"):
if begun:
yield Fasta(name, sequence)
name = line.replace(">", "")
sequence = ""
begun = True
else:
sequence += line
if name != "":
yield Fasta(name, sequence)
# Parsing user input
try:
fasta_file = sys.argv[1] # Input fasta file
number_wanted = int(sys.argv[2]) # Number of sequences wanted
result_file = sys.argv[3] # Output fasta file
except:
print(__doc__)
sys.exit(0)
# Main
if __name__ == '__main__':
fasta_sequences = fasta_iterator(fasta_file)
index = 0
retained = []
for fasta in fasta_sequences:
index += 1
if index <= number_wanted:
retained.append(fasta)
else:
rand = random.randrange(index)
if rand < number_wanted:
retained[random.randrange(number_wanted)] = fasta
with myopen(result_file, "wt") as outf:
for s in retained:
outf.write(">" + s.name + "\n")
outf.write(s.sequence + "\n")