-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtop.tex
61 lines (44 loc) · 1.21 KB
/
top.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
% $Id: tidbits.tex,v 1.12 2001/03/25 18:02:03 augustss Exp $
%
%\batchmode
\nonstopmode
\documentclass{article}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{latexsym}
\usepackage{verbatim}
\newenvironment{code}{\footnotesize\verbatim}{\endverbatim\normalsize}
\date{}
\title{
$\lambda$-calculus cooked four ways
}
\author{
Lennart Augustsson
}
\begin{document}
\maketitle
% ================================================================
\section{Introduction}
This little paper describes how to implement $\lambda$-calculus in
four different ways. To be precise, it shows how to implement the
functions that compute the ($\beta$) normal form of an expression.
%%% and how to test two expressions for $\alpha$-equality.
\section{Preliminaries}
\subsection{Lambda}
\input{Lambda}
\subsection{IdInt}
\input{IdInt}
\section{Na\"{i}ve Substitution}
\input{Simple}
\section{The Barendregt Convention}
\input{Unique}
\section{Higher Order Abstract Syntax}
\input{HOAS}
\section{deBruijn indicies}
\input{DeBruijn}
\section{Tasting time}
Finally, we want to try out the different implementations.
To this end we have a simple main program to pick which
normal form function to use.
\input{Main}
\end{document}