-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgen_watermark_AFS.py
155 lines (117 loc) · 5.28 KB
/
gen_watermark_AFS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import print_function
import argparse
import os
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from helpers.loaders import *
from helpers.utils import adjust_learning_rate
from models import *
from trainer import test, train, test_afs
parser = argparse.ArgumentParser(description='generate watermarks used in Adversarial Frontier Stitching')
parser.add_argument('--train_db_path', default='./data', help='the path to the root folder of the traininng data')
parser.add_argument('--test_db_path', default='./data', help='the path to the root folder of the traininng data')
parser.add_argument('--dataset', default='cifar10', help='the dataset to train on')
parser.add_argument('--batch_size', default=500, type=int, help='the batch size')
parser.add_argument('--save_dir', default='./checkpoint/', help='the path to the model dir')
parser.add_argument('--load_path', default='./checkpoint/ckpt.t7', help='the path to the target model, to be used with resume flag')
parser.add_argument('--load_path2', default='', help='optional, the path to another model for evaluating watermark accuracy on an independent model')
parser.add_argument('--log_dir', default='./log', help='the path the log dir')
parser.add_argument('--runname', default='train', help='the exp name')
parser.add_argument('--model', default='resnet18', help='architecture of the the model')
parser.add_argument('--eps', type=float, default=0, help='the scale of adversarial perturbation in AFS')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
LOG_DIR = args.log_dir
if not os.path.isdir(LOG_DIR):
os.mkdir(LOG_DIR)
logfile = os.path.join(LOG_DIR, 'log_' + str(args.runname) + '.txt')
confgfile = os.path.join(LOG_DIR, 'conf_' + str(args.runname) + '.txt')
# save configuration parameters
with open(confgfile, 'w') as f:
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
trainloader, testloader, n_classes = getdataloader(
args.dataset, args.train_db_path, args.test_db_path, args.batch_size)
size100 = args.dataset.split('+')[0] == 'pubfig83'
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.exists(args.load_path), 'Error: no checkpoint found!'
checkpoint = torch.load(args.load_path)
net = checkpoint['net']
acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
net = net.to(device)
# support cuda
if device == 'cuda':
print('Using CUDA')
print('Parallel training on {0} GPUs.'.format(torch.cuda.device_count()))
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
trainloader = batch_gen(trainloader)
def gen_adv(net, eps):
global trainloader
net.eval()
inputs, targets = next(trainloader)
inputs, targets = inputs.to(device), targets.to(device)
inputs.requires_grad = True
outputs = net(inputs)
_, predicted = torch.max(outputs, 1)
loss = criterion(outputs, targets)
grad = torch.autograd.grad(loss, [inputs])[0]
with torch.no_grad():
adv_inputs = inputs + eps * grad.sign()
adv_outputs = net(adv_inputs)
_, adv_predicted = torch.max(adv_outputs, 1)
cnt_correct = 0
cnt_fool = 0
for i in range(inputs.size(0)):
if predicted[i] == targets[i]:
cnt_correct += 1
if adv_predicted[i] != targets[i]:
cnt_fool += 1
return float(cnt_fool) / cnt_correct, adv_inputs, targets, predicted, adv_predicted
eps = args.eps
with open(logfile, 'a') as f:
f.write("[eps: %.3f][fool_rate: %.3f]\n"%(eps, gen_adv(net, eps)[0]))
print ("[eps: %.3f][fool_rate: %.3f]"%(eps, gen_adv(net, eps)[0]))
tot_wm = 100
tot_true_adv = 50
tot_false_adv = 50
afs_inputs = []
afs_targets = []
while max(tot_true_adv, tot_false_adv) > 0:
fool_rate, adv_inputs, targets, predicted, adv_predicted = gen_adv(net, eps)
cnt_true = 0
cnt_false = 0
for i in range(adv_inputs.size(0)):
if predicted[i] == targets[i]:
if adv_predicted[i] == targets[i]:
if tot_false_adv > 0:
tot_false_adv -= 1
cnt_false += 1
afs_inputs.append(adv_inputs[i])
afs_targets.append(targets[i])
else:
if tot_true_adv > 0:
tot_true_adv -= 1
cnt_true += 1
afs_inputs.append(adv_inputs[i])
afs_targets.append(targets[i])
with open(logfile, 'a') as f:
f.write("[eps: %.3f][fool_rate: %.3f][true_adv: %d][false_adv: %d]\n"%(eps, fool_rate, cnt_true, cnt_false))
print ("[eps: %.3f][fool_rate: %.3f][true_adv: %d][false_adv: %d]"%(eps, fool_rate, cnt_true, cnt_false))
checkpoint["afs_inputs"] = torch.stack(afs_inputs)
checkpoint["afs_targets"] = torch.stack(afs_targets)
print (checkpoint["afs_inputs"].size(), checkpoint["afs_targets"].size())
if len(args.load_path2) > 0:
checkpoint2 = torch.load(args.load_path2)
net2 = checkpoint2['net']
net2.afs_inputs = checkpoint["afs_inputs"]
net2.afs_targets = checkpoint["afs_targets"]
test_afs(net2, logfile)
torch.save(checkpoint, os.path.join(args.save_dir, str(args.runname) + '.afs_nowm.t7'))