-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAWAP_GRIDS-daily.R
94 lines (78 loc) · 2.83 KB
/
AWAP_GRIDS-daily.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
'name:AWAP_GRIDS-daily'
#library(githubinstall)
#githubinstall("awaptools[develop]")
#install.packages("devtools")
#library(devtools)
#install_github("swish-climate-impact-assessment/awaptools", ref = "develop")
require(awaptools)
source('code/compress_gtifs2.R')
library(raster)
setwd("data_daily")
# get weather data, beware that each grid is a couple of megabytes
vars <- c("vprph15")#"maxave")#,"minave","totals","vprph09","vprph15") #,"solarave")
# solar only available after 1990
for(yy in 1993){
for(measure in vars)
{
#measure <- vars[1]
get_awap_data(start = sprintf('%s-01-01', yy),end = sprintf('%s-12-31', yy), measure)
}
}
st <- Sys.time()
for(year in 1993){
print(year)
# setwd("../data_daily_derived_1961_1990")
# year = 1992
filelist <- dir(pattern = "grid$")
filelist <- filelist[grep(sprintf("_%s", year), filelist)]
filelist
# for(fl in filelist[-1]){
# file.rename(fl, file.path("../data_daily_derived_1991_2015", fl))
# }
compress_gtifs2(indir = getwd(), subDir = "../data_daily_derived_1991_2015", filelist = filelist)
ed <- Sys.time()
print(ed - st)
}
datadir <- "GTif"
library(rgdal)
library(plyr)
library(reshape)
library(ggmap)
# get location
address2 <- c("1 Lineaus way acton canberra", "daintree forest queensland", "hobart",
"bourke")
locn <- geocode(address2)
# this uses google maps API, better check this
locn
## Treat data frame as spatial points
epsg <- make_EPSG()
shp <- SpatialPointsDataFrame(cbind(locn$lon,locn$lat),data.frame(address = address2, locn),
proj4string=CRS(epsg$prj4[epsg$code %in% '4283']))
# TODO make this extraction a function, and optimise with raster package things like stack and brick
# now loop over grids and extract met data
cfiles <- dir(datadir, pattern=".tif$", full.names = T)
for (i in seq_len(length(cfiles))) {
#i <- 1 ## for stepping thru
gridname <- cfiles[[i]]
r <- raster(gridname)
#image(r) # plot to look at
e <- extract(r, shp, df=T)
#str(e) ## print for debugging
e1 <- shp
e1@data$values <- e[,2]
e1@data$gridname <- gridname
# write to to target file
write.table(e1@data,"output.csv",
col.names = i == 1, append = i>1 , sep = ",", row.names = FALSE)
}
# further work is required to format the column with the gridname to get out the date and weather paramaters.
dat <- read.csv("output.csv", stringsAsFactors = F)
head(dat)
dat$date <- matrix(unlist(strsplit(dat$gridname, "_")), ncol = 3, byrow=TRUE)[,3]
dat$date <- paste(substr(dat$date,1,4), substr(dat$date,5,6), substr(dat$date,7,8), sep = "-")
dat$measure <- matrix(unlist(strsplit(dat$gridname, "_")), ncol = 3, byrow=TRUE)[,2]
dat <- arrange(dat[,c("address", "lon", "lat", "date", "measure", "values")], address, date, measure)
head(dat)
dat2 <- cast(dat, address + date ~ measure, value = 'values',
fun.aggregate= 'mean')
dat2