-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_exp_eeg.py
490 lines (441 loc) · 18.6 KB
/
run_exp_eeg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""Runs an ABnet (Siamese network) on brain data
Usage:
run_exp_eeg.py [--dataset-path=path]
[--batch-size=100]
[--init-lr=0.001] [--epochs=100]
[--trainer-type=adadelta]
[--prefix-output-fname=my_prefix_42] [--debug-print=0]
[--debug-time] [--debug-plot=0]
Options:
-h --help Show this screen
--version Show version
--dataset-path=str A valid path to the dataset
default is timit
--batch-size=int Batch size, used only by the batch iterator
default is 100 (unused for "sentences" iterator type)
--init-lr=float Initial learning rate for SGD
default is 0.001 (that is very low intentionally)
--epochs=int Max number of epochs (always early stopping)
default is 100
--trainer-type=str "SGD" | "adagrad" | "adadelta"
default is "adadelta"
--prefix-output-fname=str An additional prefix to the output file name
default is "" (empty string)
--debug-print=int Level of debug printing. 0: nothing, 1: network
default is 0 2: epochs/iters related
--debug-time Flag that activates timing epoch duration
default is False, using it makes it True
--debug-plot=int Level of debug plotting, 1: costs
default is 0 >= 2: gradients & updates
"""
import socket, docopt, cPickle, time, sys, os
import numpy
import matplotlib
matplotlib.use('Agg')
try:
import prettyplotlib as ppl
except:
print >> sys.stderr, "you should install prettyplotlib"
import matplotlib.pyplot as plt
import joblib
import random
from numpy.random import shuffle
from prep_timit import load_data
from layers import Linear, ReLU, SigmoidLayer, SoftPlus
from classifiers import LogisticRegression
from nnet_archs import ABNeuralNet2Outputs
#from nnet_archs import DropoutABNeuralNet2Outputs # TODO
DEBUG = False
DIM_EMBEDDING = 100
class DatasetEEGIterator(object):
def __init__(self, data, normalize=False, min_max_scale=False,
scale_f1=None, scale_f2=None,
batch_size=1, only_same=False):
self._scale_f1 = scale_f1
self._scale_f2 = scale_f2
self._data = data
def __iter__(self):
# TODO batch_size
# TODO equilibrate same/different subjects/conditions cross-all
for i, l1 in enumerate(self._data):
for l2 in self._data[i+1:]:
y1 = (l1[1] == l2[1]) # condition
y2 = (l1[0] == l2[0]) # subject
yield [[[l1[2:]], [l2[2:]]],
[[y1], [y2]]]
class DatasetEEGCachedIterator(DatasetEEGIterator):
def __init__(self, data, normalize=False, min_max_scale=False,
scale_f1=None, scale_f2=None,
batch_size=1, only_same=False):
super(DatasetEEGCachedIterator, self).__init__(data, normalize,
min_max_scale, scale_f1, scale_f2, batch_size, only_same)
self.batch_size = batch_size
self._x1 = []
self._x2 = []
self._y1 = []
self._y2 = []
min_ratio = 0.2 # TODO
same_c = 0.01
diff_c = 0.01
same_s = 0.01
diff_s = 0.01
for i, l1 in enumerate(self._data):
for l2 in self._data[i+1:]:
# TODO BALANCE SMARTLY HERE
y1 = int(l1[1] == l2[1]) # condition
y2 = int(l1[0] == l2[0]) # subject
add_it = False
#if y1 == 0 and y2 == 0: TODO
if y1 == 0 or y2 == 0:
if same_c / (same_c + diff_c) > min_ratio and same_s / (same_s + diff_s) > min_ratio:
add_it = True
else:
# TODO
add_it = True
if add_it:
self._x1.append(l1[2:])
self._x2.append(l2[2:])
self._y1.append(y1)
self._y2.append(y2)
same_c += y1
same_s += y2
diff_c += 1-y1
diff_s += 1-y2
self._x1 = numpy.asarray(self._x1, dtype='float32')
self._x2 = numpy.asarray(self._x2, dtype='float32')
self._y1 = numpy.asarray(self._y1, dtype='int32')
self._y2 = numpy.asarray(self._y2, dtype='int32')
# print self._x1
# print self._y1
# print self._x1.shape
# print self._y1.shape
# print self._x1.dtype
# print self._y1.dtype
def __iter__(self):
bs = self.batch_size
for i in xrange(0, self._x1.shape[0], bs):
yield [[self._x1[i:i+bs], self._x2[i:i+bs]],
[self._y1[i:i+bs], self._y2[i:i+bs]]]
def print_mean_weights_biases(params):
for layer_ind, param in enumerate(params):
filler = "weight"
if layer_ind % 2:
filler = "bias"
print("layer %i mean %s values %f and std devs %f" % (layer_ind/2,
filler, numpy.mean(param.eval()), numpy.std(param.eval())))
def plot_costs(cost):
# TODO
pass
def rolling_avg_pgu(iteration, pgu, l):
# (iteration * pgu + l) / (iteration + 1)
assert len(l) == len(pgu)
ll = len(l)/3
params, gparams, updates = l[:ll], l[ll:-ll], l[-ll:]
mpars, mgpars, mupds = pgu[:ll], pgu[ll:-ll], pgu[-ll:]
ii = iteration + 1
return [(iteration * mpars[k] + p) / ii for k, p in enumerate(params)] +\
[(iteration * mgpars[k] + g) / ii for k, g in enumerate(gparams)] +\
[(iteration * mupds[k] + u) / ii for k, u in enumerate(updates)]
def plot_params_gradients_updates(n, l):
# TODO currently works only with THEANO_FLAGS="device=cpu" (not working on
#CudaNDArrays)
def plot_helper(li, ti, p):
if ppl == None:
print >> sys.stderr, "cannot plot this without prettyplotlib"
return
fig, ax = plt.subplots(1)
if li % 2:
title = "biases" + ti
ppl.bar(ax, numpy.arange(p.shape[0]), p) # TODO with plt
else:
title = "weights" + ti
ppl.pcolormesh(fig, ax, p) # TODO with plt
plt.title(title)
plt.savefig(title + ".png")
#ppl.show()
plt.close()
ll = len(l)/3
params, gparams, updates = l[:ll], l[ll:-ll], l[-ll:]
if DEBUG:
print "params"
print params
print "===================="
print "gparams" # TODO find out why not CudaNDArray here
print gparams
print "===================="
print "updates" # TODO find out why not CudaNDArray here
print updates
title_iter = "_%04i" % n
for layer_ind, param in enumerate(params):
title = "_for_layer_" + str(layer_ind/3) + title_iter
plot_helper(layer_ind, title, param)
for layer_ind, gparam in enumerate(gparams):
title = "_gradients_for_layer_" + str(layer_ind/3) + title_iter
plot_helper(layer_ind, title, gparam)
for layer_ind, update in enumerate(updates):
title = "_updates_for_layer_" + str(layer_ind/3) + title_iter
plot_helper(layer_ind, title, update)
def run(dataset_path,
batch_size=100,
init_lr=0.01, max_epochs=100,
trainer_type="adadelta",
layers_types=[ReLU, ReLU, ReLU, ReLU, ReLU],
layers_sizes=[1400, 1400, 1400, 1400],
dropout_rates=[0.2, 0.5, 0.5, 0.5, 0.5],
prefix_fname='',
debug_print=0,
debug_time=False,
debug_plot=0):
"""
FIXME TODO
"""
output_file_name = 'eeg_Leo'
if prefix_fname != "":
output_file_name = prefix_fname + "_"
output_file_name += "_" + trainer_type
output_file_name += "_emb_" + str(DIM_EMBEDDING)
print "output file name:", output_file_name
n_ins = None
n_outs = None
print "loading dataset from", dataset_path
if dataset_path[-7:] != '.joblib':
print >> sys.stderr, "prepare your dataset!!"
sys.exit(-1)
### LOADING DATA
data = joblib.load(dataset_path)
shuffle(data)
print data.shape
has_dev_and_test_set = True
dev_dataset_path = dataset_path[:-7].replace("train", "") + 'dev.joblib'
test_dataset_path = dataset_path[:-7].replace("train", "") + 'test.joblib'
dev_split_at = len(data)
test_split_at = len(data)
if not os.path.exists(dev_dataset_path) or not os.path.exists(test_dataset_path):
has_dev_and_test_set = False
dev_split_at = int(0.8 * dev_split_at)
test_split_at = int(0.9 * test_split_at)
# dev_split_at = int(0.96 * dev_split_at)
# test_split_at = int(0.98 * test_split_at)
n_ins = data[0].shape[0] - 2
n_outs = DIM_EMBEDDING
normalize = False
min_max_scale = False
### TRAIN SET
if has_dev_and_test_set:
train_set_iterator = DatasetEEGCachedIterator(data,
normalize=normalize, min_max_scale=min_max_scale,
scale_f1=None, scale_f2=None, batch_size=batch_size)
else:
train_set_iterator = DatasetEEGCachedIterator(data[:dev_split_at],
normalize=normalize, min_max_scale=min_max_scale,
scale_f1=None, scale_f2=None, batch_size=batch_size)
f1 = train_set_iterator._scale_f1
f2 = train_set_iterator._scale_f2
### DEV SET
if has_dev_and_test_set:
data = joblib.load(dev_dataset_path)
valid_set_iterator = DatasetEEGCachedIterator(data,
normalize=normalize, min_max_scale=min_max_scale,
scale_f1=f1, scale_f2=f2, batch_size=batch_size)
else:
valid_set_iterator = DatasetEEGCachedIterator(data[dev_split_at:test_split_at],
normalize=normalize, min_max_scale=min_max_scale,
scale_f1=f1, scale_f2=f2, batch_size=batch_size)
### TEST SET
if has_dev_and_test_set:
data = joblib.load(test_dataset_path)
test_set_iterator = DatasetEEGCachedIterator(data,
normalize=normalize, min_max_scale=min_max_scale,
scale_f1=f1, scale_f2=f2, batch_size=batch_size)
else:
test_set_iterator = DatasetEEGCachedIterator(data[test_split_at:],
normalize=normalize, min_max_scale=min_max_scale,
scale_f1=f1, scale_f2=f2, batch_size=batch_size)
assert n_ins != None
assert n_outs != None
# numpy random generator
numpy_rng = numpy.random.RandomState(123)
print '... building the model'
# TODO the proper network type other than just dropout or not
nnet = None
nnet = ABNeuralNet2Outputs(numpy_rng=numpy_rng,
n_ins=n_ins,
layers_types=layers_types,
layers_sizes=layers_sizes,
n_outs=n_outs,
loss='cos_cos2',
rho=0.95,
eps=1.E-6,
max_norm=0.,
debugprint=debug_print)
print "Created a neural net as:",
print str(nnet)
# get the training, validation and testing function for the model
print '... getting the training functions'
print trainer_type
train_fn = None
if debug_plot or debug_print:
if trainer_type == "adadelta":
train_fn = nnet.get_adadelta_trainer(debug=True)
elif trainer_type == "adagrad":
train_fn = nnet.get_adagrad_trainer(debug=True)
else:
train_fn = nnet.get_SGD_trainer(debug=True)
else:
if trainer_type == "adadelta":
train_fn = nnet.get_adadelta_trainer()
elif trainer_type == "adagrad":
train_fn = nnet.get_adagrad_trainer()
else:
train_fn = nnet.get_SGD_trainer()
train_scoref_c = nnet.score_classif_same_diff_word_separated(train_set_iterator)
valid_scoref_c = nnet.score_classif_same_diff_word_separated(valid_set_iterator)
test_scoref_c = nnet.score_classif_same_diff_word_separated(test_set_iterator)
train_scoref_s = nnet.score_classif_same_diff_spkr_separated(train_set_iterator)
valid_scoref_s = nnet.score_classif_same_diff_spkr_separated(valid_set_iterator)
test_scoref_s = nnet.score_classif_same_diff_spkr_separated(test_set_iterator)
data_iterator = train_set_iterator
print '... training the model'
# early-stopping parameters
best_validation_loss = numpy.inf
test_score = 0.
start_time = time.clock()
epoch = 0
lr = init_lr
timer = None
if debug_plot:
print_mean_weights_biases(nnet.params)
#with open(output_file_name + 'epoch_0.pickle', 'wb') as f:
# cPickle.dump(nnet, f, protocol=-1)
while (epoch < max_epochs):
epoch = epoch + 1
avg_costs = []
avg_params_gradients_updates = []
if debug_time:
timer = time.time()
for iteration, (x, y) in enumerate(data_iterator):
# print "x[0]", x[0]
# print "x[1]", x[1]
# print "y[0]", y[0]
# print "y[1]", y[1]
avg_cost = 0.
if "delta" in trainer_type:
avg_cost = train_fn(x[0], x[1], y[0], y[1])
else:
avg_cost = train_fn(x[0], x[1], y[0], y[1], lr)
if debug_print >= 3:
print "cost:", avg_cost[0]
if debug_plot >= 2:
plot_costs(avg_cost[0])
if not len(avg_params_gradients_updates):
avg_params_gradients_updates = map(numpy.asarray, avg_cost[1:])
else:
avg_params_gradients_updates = rolling_avg_pgu(
iteration, avg_params_gradients_updates,
map(numpy.asarray, avg_cost[1:]))
if debug_plot >= 3:
plot_params_gradients_updates(iteration, avg_cost[1:])
if type(avg_cost) == list:
avg_costs.append(avg_cost[0])
else:
avg_costs.append(avg_cost)
if iteration > 2: # TODO remove
break # TODO remove
if debug_print >= 2:
print_mean_weights_biases(nnet.params)
if debug_plot >= 2:
plot_params_gradients_updates(epoch, avg_params_gradients_updates)
if debug_time:
print(' epoch %i took %f seconds' % (epoch, time.time() - timer))
avg_cost = numpy.mean(avg_costs)
if numpy.isnan(avg_cost):
print("avg costs is NaN so we're stopping here!")
break
print(' epoch %i, avg costs %f' % \
(epoch, avg_cost))
tmp_train = zip(*train_scoref_c())
print(' epoch %i, training sim same conds %f, diff conds %f' % \
(epoch, numpy.mean(tmp_train[0]), numpy.mean(tmp_train[1])))
tmp_train = zip(*train_scoref_s())
print(' epoch %i, training sim same subjs %f, diff subjs %f' % \
(epoch, numpy.mean(tmp_train[0]), numpy.mean(tmp_train[1])))
# TODO update lr(t) = lr(0) / (1 + lr(0) * lambda * t)
lr = numpy.float32(init_lr / (numpy.sqrt(iteration) + 1.)) ### TODO
#lr = numpy.float32(init_lr / (iteration + 1.)) ### TODO
# or another scheme for learning rate decay
#with open(output_file_name + 'epoch_' +str(epoch) + '.pickle', 'wb') as f:
# cPickle.dump(nnet, f, protocol=-1)
# we check the validation loss on every epoch
validation_losses_c = zip(*valid_scoref_c())
validation_losses_s = zip(*valid_scoref_s())
this_validation_loss = 0.25*(1.-numpy.mean(validation_losses_c[0])) +\
0.25*numpy.mean(validation_losses_c[1]) +\
0.25*(1.-numpy.mean(validation_losses_s[0])) +\
0.25*numpy.mean(validation_losses_s[1])
print(' epoch %i, valid sim same conds %f, diff conds %f' % \
(epoch, numpy.mean(validation_losses_c[0]), numpy.mean(validation_losses_c[1])))
print(' epoch %i, valid sim same subjs %f, diff subjs %f' % \
(epoch, numpy.mean(validation_losses_s[0]), numpy.mean(validation_losses_s[1])))
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
with open(output_file_name + '.pickle', 'wb') as f:
cPickle.dump(nnet, f, protocol=-1)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
# test it on the test set
test_losses_c = zip(*test_scoref_c())
test_losses_s = zip(*test_scoref_s())
print(' epoch %i, test sim same conds %f, diff conds %f' % \
(epoch, numpy.mean(test_losses_c[0]), numpy.mean(test_losses_c[1])))
print(' epoch %i, test sim same subjs %f, diff subjs %f' % \
(epoch, numpy.mean(test_losses_s[0]), numpy.mean(test_losses_s[1])))
end_time = time.clock()
print(('Optimization complete with best validation score of %f, '
'with test performance %f') %
(best_validation_loss, test_score))
print >> sys.stderr, ('The fine tuning code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time)
/ 60.))
with open(output_file_name + '_final.pickle', 'wb') as f:
cPickle.dump(nnet, f, protocol=-1)
if __name__=='__main__':
arguments = docopt.docopt(__doc__, version='run_exp version 0.1')
dataset_path = ''
if arguments['--dataset-path'] != None:
dataset_path = arguments['--dataset-path']
batch_size = 100
if arguments['--batch-size'] != None:
batch_size = int(arguments['--batch-size'])
init_lr = 0.01
if arguments['--init-lr'] != None:
init_lr = float(arguments['--init-lr'])
max_epochs = 100
if arguments['--epochs'] != None:
max_epochs = int(arguments['--epochs'])
trainer_type = 'adadelta'
if arguments['--trainer-type'] != None:
trainer_type = arguments['--trainer-type']
prefix_fname = ''
if arguments['--prefix-output-fname'] != None:
prefix_fname = arguments['--prefix-output-fname']
debug_print = 0
if arguments['--debug-print']:
debug_print = int(arguments['--debug-print'])
debug_time = False
if arguments['--debug-time']:
debug_time = True
debug_plot = 0
if arguments['--debug-plot']:
debug_plot = int(arguments['--debug-plot'])
run(dataset_path=dataset_path,
batch_size=batch_size,
init_lr=init_lr, max_epochs=max_epochs,
trainer_type=trainer_type,
layers_types=[ReLU, ReLU, ReLU, ReLU],
layers_sizes=[500, 500, 500],
prefix_fname=prefix_fname,
debug_print=debug_print,
debug_time=debug_time,
debug_plot=debug_plot)
#THEANO_FLAGS='device=gpu0' python run_exp_AB_eeg.py --dataset-path=eeg.joblib --debug-print=1 --debug-time