-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathssr.h
217 lines (181 loc) · 4.67 KB
/
ssr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#ifndef ssr_h
#define ssr_h
#define RELAYPIN 3 // relay control SSR PWM
#include <number_format.h>
#include <io_utils.h>
#include <log.h>
#define DEBUG
#ifdef DEBUG
bool DEBUG_ssr = true;
#else
bool DEBUG_ssr = false;
#endif
bool ssrDisabled = true; // safety ON
float currentDuty = 0; // ssrpower
bool invertDuty = true; // invert duty logic vcc range, true for low side sinking, pwm is high pulse
bool invertLOW = !invertDuty; // Drive SSR with VCC // invert logic for 2 state relay, this is usually opposite of invertDuty
int _ssrRelayPin = -1;
void ssr_init(uint16_t pin){
#ifdef ESP8266
analogWriteRange(255); // esp8266
// analogWriteFreq(120); // min 100hz
#elif defined(ESP32)
// analogWriteResolution(_ssrRelayPin, 8);
#endif
//ssr enable
Logger.println("[SSR] READY on pin " + (String)_ssrRelayPin);
_ssrRelayPin = pin;
// ssr_off();
digitalWrite(_ssrRelayPin, invertLOW ? LOW : HIGH);
pinMode( _ssrRelayPin, OUTPUT );
}
void ssr_init(){
ssr_init(RELAYPIN);
}
// This is where the SSR is controlled via PWM
void SetSSRFrequency( int duty,int power =1)
{
if(duty!=currentDuty){
// calculate the wanted duty based on settings power override
duty = ((float)duty * power ); // power adjust
duty = constrain( round_f( duty ), 0, 255); // round and clamp
duty = abs(duty); // convert to whole
// Write the clamped duty cycle to the RELAYPIN GPIO
int out = invertDuty ? 255-duty : duty;
// Logger.println("[SSR] " + (String)out);
if(!ssrDisabled){
#ifdef ESP8266
analogWrite( _ssrRelayPin, out);
#elif defined(ESP32)
Logger.println("[SSR] - " + (String)out);
analogWrite( _ssrRelayPin, out);
// dacWrite(_ssrRelayPin,out);
#endif
// if(duty == 0)ssr_off();
// if(duty == 255)ssr_on();
// else ssr_off(); // ENFORCE SAFETY
// if(DEBUG_ssr) Logger.println("[SSR] " + (String)duty);
if(duty<1 && DEBUG_ssr) Logger.println("[SSR]: Duty OFF - " + (String)out);
else{
if(DEBUG_ssr) Logger.print("[SSR] Duty ON");
if(DEBUG_ssr) Logger.println( " - duty: " + (String)duty + " " + String( ( duty / 256.0 ) * 100) + "%" +" pow:" + String( round_f( power * 100 )) + "%" );
}
}
}
currentDuty = duty;
}
void ssr_off(){
if(_ssrRelayPin >= 0){
Logger.println("[SSR] OFF");
SetSSRFrequency(0); //working
analogWrite( _ssrRelayPin, invertDuty ? 255 : 0 ); // MUST use analogwrite if using shim lib
// digitalWrite(_ssrRelayPin, invertLOW ? LOW : HIGH); // @todo esp32 issue? must do analogwrite first
}
}
void ssr_on(){
if(_ssrRelayPin >= 0) {
Logger.println("[SSR] ON");
SetSSRFrequency(255); // working
analogWrite( _ssrRelayPin, invertDuty ? 0: 255);
// digitalWrite(_ssrRelayPin, invertLOW ? HIGH : LOW);
}
}
void setSSR(int duty){
SetSSRFrequency(duty);
}
void setSSRFreq(int duty){
#ifdef ESP8266
analogWriteFreq(duty); // min 100hz
#endif
}
float getSSRDuty(){
return currentDuty;
}
float getSSRPower(){
return ( currentDuty / 255.0 ) * 100;
}
void ssr_resume(){
Logger.println("[SSR] ssr_resume");
if(_ssrRelayPin >= 0) setSSR(currentDuty);
}
void disableSSR(bool disabled = true){
Logger.println("[SSR] disable ssr");
setSSR(0);
ssr_off();
ssrDisabled = true;
// init safe state, lockdown
// pinMode(_ssrRelayPin,INPUT_PULLUP);
}
void enableSSR(bool disabled = false){
Logger.println("[SSR] enable ssr");
setSSR(0);
ssr_off();
ssrDisabled = false;
// init safe state
// pinMode(_ssrRelayPin,OUTPUT); // PINMODE BREAKS ANALOGWRITE LEDC CHANNEL
ssr_on();
delay(500); // test pulse
ssr_off();
}
void toggleSSR(){
ssrDisabled = !ssrDisabled;
if(!ssrDisabled) ssr_resume();
else ssr_off();
}
void ssrTest(int speed){
ssrDisabled = false;
ssr_on();
delay(1000);
ssr_off();
delay(1000);
ssr_on();
delay(1000);
ssr_off();
delay(2000);
// Turn off the SSR - duty cycle of 0
SetSSRFrequency( 255 ); // test pulse
delay(1000);
SetSSRFrequency( 0 );
delay(1000);
SetSSRFrequency( 255 ); // test pulse
delay(1000);
SetSSRFrequency( 0 );
for(int i=0;i<255;i++){
SetSSRFrequency( i );
delay(100);
}
for(int i=0;i<255;i++){
SetSSRFrequency( 255-i );
delay(100);
}
ssr_off();
ssrDisabled = true;
}
void ssrPing(int speed){
Serial.println("[SSR] PING");
ssrDisabled = false;
ssr_off();
ssr_off();
delay(500);
ssr_on();
delay(speed*3);
ssr_off();
delay(speed*3);
ssr_on();
delay(speed*2);
ssr_off();
delay(speed*2);
ssr_on();
delay(speed);
// for(int i=0;i<255;i+20){
// SetSSRFrequency( i );
// delay(100);
// }
// for(int i=0;i<255;i+20){
// SetSSRFrequency( 255-i );
// delay(100);
// }
ssr_off();
ssrDisabled = true;
}
#endif