forked from maxim5/time-series-machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_visual.py
38 lines (29 loc) · 1.22 KB
/
run_visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'maxim'
import matplotlib.pyplot as plt
from predict import predict_multiple
from train import JobInfo
from util import parse_command_line, read_df
plt.style.use('ggplot')
def main():
train_date = None
tickers, periods, targets = parse_command_line(default_tickers=['BTC_ETH', 'BTC_LTC'],
default_periods=['day'],
default_targets=['high'])
for ticker in tickers:
for period in periods:
for target in targets:
job = JobInfo('_data', '_zoo', name='%s_%s' % (ticker, period), target=target)
result_df = predict_multiple(job, raw_df=read_df(job.get_source_name()), rows_to_predict=120)
result_df.index.names = ['']
result_df.plot(title=job.name)
if train_date is not None:
x = train_date
y = result_df['True'].min()
plt.axvline(x, color='k', linestyle='--')
plt.annotate('Training stop', xy=(x, y), xytext=(result_df.index.min(), y), color='k',
arrowprops={'arrowstyle': '->', 'connectionstyle': 'arc3', 'color': 'k'})
plt.show()
if __name__ == '__main__':
main()