-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFlight1v2.py
334 lines (275 loc) · 11.5 KB
/
Flight1v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
##Marie Beasley
##Last Updated: Jan 18th, 2018
##Flight 1
##Uses State Estimation for the position and the linear velocity, does not use this information for anything, just outputs to the data file
##Does not use the camera at all
##Has the planner function, but only for future use
#############################################################
## this code is set up so that it will directly control the #
## PWM of motors 1 and 3 in attempt to control the pitch #
## angle of the quadrotor #
#############################################################
#############################################################
# Import the various necessary things #
#############################################################
import logging
import sys
import time
import math
import numpy
from Adafruit_BNO055 import BNO055 #for the IMU
#needed for the motors
import os #importing os library so as to communicate with the system
os.system ("sudo pigpiod") #Launching GPIO library
time.sleep(1.5) #it is impatient and so if this delay is removed you will get an error
import pigpio #importing GPIO library
#############################################################
# Planner and Controller Functions #
#############################################################
def Planner(Quad,tcurrent):
#determine the desired position to pass to the controller
xgoal = 0
ygoal = 0
zgoal = 0.5
#all the planner stuff goes here
#r = 0.2
#
#for now, do it without a planner
xdesired = xgoal
ydesired = ygoal
zdesired = zgoal
Controller(Quad,xdesired,ydesired,zdesired,tcurrent)
def Controller(Quad,xdesired,ydesired,zdesired,tcurrent): #take in current state and goal position to determine the desired inputs
maxsigma = 1000
k_M = 1.13e-7 #using values from in lab quadrotors
k_F = 5.46e-5 #using values from in lab quadrotors
lx = 0.28575/2 #x spar length (m)
ly = 0.3556/2 #y spar length (m)
m = 1 #mass of the quadcopter (kg)
g = 9.81 #acceleration due to gravity (m/s^2)
K = numpy.matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
state = numpy.matrix([[Quad.xpos], [Quad.ypos], [Quad.zpos], [Quad.yaw], [Quad.roll], [Quad.pitch], [Quad.xvel], [Quad.yvel], [Quad.zvel], [Quad.w1], [Quad.w2], [Quad.w3]])
goalstate = numpy.matrix([[xdesired], [ydesired], [zdesired], [0], [0], [0], [0], [0], [0], [0], [0], [0]])
diff = state-goalstate
u = K*diff
#u = numpy.matrix([[s1],[0],[s3],[0]]) #just for now to check that the motors are running
#check to ensure within max spinrate
#
#
#
pitchgoal = 0
u1 = 0 #u[0]
u2 = -0.4*(Quad.pitch-pitchgoal) - 0.4594*Quad.w2 #u[1]
#-0.5515
#-0.4594
u3 = 0 #u[2]
u4 = 0 #u[3]
#Convert to spin rates
W = numpy.array([[k_F*ly,-k_F*ly,k_F*ly,-k_F*ly], [k_F*lx,k_F*lx,-k_F*lx,-k_F*lx], [k_M, -k_M, -k_M, k_M], [-k_F, -k_F, -k_F, -k_F]])
u = numpy.array([[u1],[u2],[u3],[u4]])
spin = numpy.linalg.solve(W,u)
MotorsControl(float(spin[0]),float(spin[1]),float(spin[2]),float(spin[3])) #call function to update the motor speeds - NEED TO HAVE THE INT CONVERSION
#############################################################
# Class Definitions #
#############################################################
#create the quadrotor class
class QuadState:
def __init__(self,xpos,ypos,zpos,yaw,roll,pitch,xvel,yvel,zvel,w1,w2,w3):
self.xpos = xpos
self.ypos = ypos
self.zpos = zpos
self.yaw = yaw
self.roll = roll
self.pitch = pitch
self.xvel = xvel
self.yvel = yvel
self.zvel = zvel
self.w1 = w1
self.w2 = w2
self.w3 = w3
#create the obstacle class
class ObstacleState:
def __init__(self,xpos,ypos,zpos):
self.xpos = xpos
self.ypos = ypos
self.zpos = zpos
#############################################################
# Motor Functions #
#############################################################
# Motor Configuration:
# 1:yellow(c) 2:orange
# .
# .
# 3:white(cc) 4:blue(c)
Motor1=6 #Connect Motor1 in this GPIO pin (yellow)
Motor2=13 #Connect Motor2 in this GPIO pin (orange)
Motor3=19 #Connect Motor3 in this GPIO pin (white)
Motor4=26 #Connect Motor4 in this GPIO pin (blue)
max_value = 2000 #max PWM
min_value = 700 #min PWM
pi = pigpio.pi()
def MotorsStart():
pi.set_servo_pulsewidth(Motor1, 0)
#pi.set_servo_pulsewidth(Motor2, 0)
pi.set_servo_pulsewidth(Motor3, 0)
#pi.set_servo_pulsewidth(Motor4, 0)
def MotorsCalibrate(): #This is the auto calibration procedure of a normal ESC
pi.set_servo_pulsewidth(Motor1, 0)
#pi.set_servo_pulsewidth(Motor2, 0)
pi.set_servo_pulsewidth(Motor3, 0)
#pi.set_servo_pulsewidth(Motor4, 0)
pi.set_servo_pulsewidth(Motor1, max_value)
#pi.set_servo_pulsewidth(Motor2, max_value)
pi.set_servo_pulsewidth(Motor3, max_value)
#pi.set_servo_pulsewidth(Motor4, max_value)
print("You will here two beeps, then wait for a gradual falling tone then press Enter")
inp = raw_input()
pi.set_servo_pulsewidth(Motor1, min_value)
#pi.set_servo_pulsewidth(Motor2, min_value)
pi.set_servo_pulsewidth(Motor3, min_value)
#pi.set_servo_pulsewidth(Motor4, min_value)
print "Wierd eh! Special tone"
time.sleep(7)
print "Wait for it ...."
time.sleep (5)
print "Im working on it, ....."
pi.set_servo_pulsewidth(Motor1, 0)
#pi.set_servo_pulsewidth(Motor2, 0)
pi.set_servo_pulsewidth(Motor3, 0)
#pi.set_servo_pulsewidth(Motor4, 0)
time.sleep(2)
print "Arming ESC now..."
pi.set_servo_pulsewidth(Motor1, min_value)
#pi.set_servo_pulsewidth(Motor2, min_value)
pi.set_servo_pulsewidth(Motor3, min_value)
#pi.set_servo_pulsewidth(Motor4, min_value)
time.sleep(1)
print "Calibration Complete"
def MotorsArm(): #This is the arming procedure of an ESC
print('Arming Motors - Should hear two beeps')
pi.set_servo_pulsewidth(Motor1, max_value)
#pi.set_servo_pulsewidth(Motor2, max_value)
pi.set_servo_pulsewidth(Motor3, max_value)
#pi.set_servo_pulsewidth(Motor4, max_value)
time.sleep(1.5)
pi.set_servo_pulsewidth(Motor1, min_value)
#pi.set_servo_pulsewidth(Motor2, min_value)
pi.set_servo_pulsewidth(Motor3, min_value)
#pi.set_servo_pulsewidth(Motor4, min_value)
time.sleep(1)
def MotorsControl(spin1,spin2,spin3,spin4): #update the PWM of the motors
maxi = 1500
mini = 1100
speed1 = (spin1+1000)
speed2 = 0 #spin2
speed3 = (spin3+1000)
speed4 = 0 #spin4
if speed1 > maxi:
speed1 = maxi
if speed1 < mini:
speed1 = mini
if speed2 > maxi:
speed2 = maxi
if speed2 < mini:
speed2 = mini
if speed3 > maxi:
speed3 = maxi
if speed3 < mini:
speed3 = mini
if speed4 > maxi:
speed4 = maxi
if speed4 < mini:
speed4 = mini
#print('control')
print(str(int(speed1)) + '\t' + str(int(speed2)) + '\t' + str(int(speed3)) + '\t' + str(int(speed4)))
pi.set_servo_pulsewidth(Motor1, speed1)
#pi.set_servo_pulsewidth(Motor2, speed2)
pi.set_servo_pulsewidth(Motor3, speed3)
#pi.set_servo_pulsewidth(Motor4, speed4)
def MotorsStop(): #This will stop every action your Pi is performing for all motors.
pi.set_servo_pulsewidth(Motor1, 0)
#pi.set_servo_pulsewidth(Motor2, 0)
pi.set_servo_pulsewidth(Motor3, 0)
#pi.set_servo_pulsewidth(Motor4, 0)
pi.stop()
os.system ("sudo killall pigpiod")
#############################################################
# Other Functions #
#############################################################
def DegtoRad(deg):
return deg*math.pi/180
#############################################################
# Main Program #
#############################################################
# Raspberry Pi configuration with serial UART and RST connected to GPIO 18:
bno = BNO055.BNO055(serial_port='/dev/ttyAMA0', rst=18)
# Enable verbose debug logging if -v is passed as a parameter.
if len(sys.argv) == 2 and sys.argv[1].lower() == '-v':
logging.basicConfig(level=logging.DEBUG)
# Initialize the BNO055 and stop if something went wrong.
if not bno.begin():
raise RuntimeError('Failed to initialize BNO055! Is the sensor connected?')
#x is forward, y is to the right, z is down
BNO055.BNO055.set_axis_remap(bno, 1, 0, 2, x_sign=0, y_sign=1, z_sign=0)
# Calibrate the ESC
# Need to calibrate if first run after pluggin turning on
print('Need to calibrate the ESC? Y or N')
inp = raw_input()
if inp == 'Y':
MotorsCalibrate()
# Start the motors
MotorsStart()
MotorsArm()
print('Motors Armed')
MotorsControl(1150,0,1150,0)
time.sleep(5) #delay between starting motors and beginning flight
print('Begin Flight')
#create data file
timestr = time.strftime("%Y%m%d-%H%M%S") #so the filename has the date followed by the time
datafile = open(timestr + '.txt','w')
datafile.write('Time(sec) \t DeltaT \t Xpos(m) \t Ypos(m) \t Zpos(m) \t Yaw(rad) \t Roll(rad) \t Pitch(rad) \t Xvel(m/s) \t Yvel(m\s) \t Zvel (m\s) \t xgyro(rad/s) \t ygyro(rad/s) \t zgyro(rad/s) \n')
tstart = time.time()
told = time.time()
#initial pos and vel
xpos = 0
ypos = 0
zpos = 0
xvel = 0
yvel = 0
zvel = 0
#run until ctrl+C is entered into the keyboard
try:
while True:
# Read the Euler angles for heading, roll, pitch (all in degrees).
yaw, roll, pitch = bno.read_euler()
yaw = DegtoRad(yaw) #convert to radians
roll = DegtoRad(roll) #convert to radians
pitch = DegtoRad(pitch) #convert to radians
# Gyroscope data (in degrees per second):
xgyro,ygyro,zgyro = bno.read_gyroscope()
xgyro = DegtoRad(xgyro) #convert to radians/sec
ygyro = DegtoRad(ygyro) #convert to radians/sec
zgyro = DegtoRad(zgyro) #convert to radians/sec
# Linear acceleration data (i.e. acceleration from movement, not gravity--
# returned in meters per second squared):
xlinacc,ylinacc,zlinacc = bno.read_linear_acceleration()
#get the curent time
deltat = time.time()-told
tcurrent = time.time()-tstart
told = tcurrent+tstart
#estimate the current position and velocity
xpos = xpos + xvel*deltat + xlinacc*deltat*deltat
ypos = ypos + yvel*deltat + ylinacc*deltat*deltat
zpos = zpos + yvel*deltat + ylinacc*deltat*deltat
xvel = xvel + xlinacc*deltat
yvel = yvel + ylinacc*deltat
zvel = zvel + zlinacc*deltat
Quad = QuadState(xpos,ypos,zpos,yaw,roll,pitch,xvel,yvel,zvel,xgyro,ygyro,zgyro)
#print(str(Quad.xpos) + '\t' + str(Quad.ypos) + '\t' + str(Quad.zpos))
# Print everything to the data file.
datafile.write(str(tcurrent) + '\t' + str(deltat) + '\t' + str(Quad.xpos) +'\t' + str(Quad.ypos) + '\t' + str(Quad.zpos) + '\t' + str(Quad.yaw) + '\t' + str(Quad.roll) + '\t' + str(Quad.pitch) + '\t' + str(Quad.xvel) + '\t' + str(Quad.yvel) + '\t' + str(Quad.zvel) + '\t' + str(Quad.w1) + '\t' + str(Quad.w2) + '\t' + str(Quad.w3) + '\n')
Planner(Quad,tcurrent) #call the planner
except KeyboardInterrupt:
datafile.close()
MotorsStop()
print("\nEnd Flight")