-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnotation.v
101 lines (84 loc) · 4.59 KB
/
notation.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
From stdpp Require Export binders strings.
From iris_simp_lang Require Export lang.
From iris Require Import options.
(*|
These notations are magic that make simp_lang, like heap_lang, easy to type and
read.
|*)
(** Coercions to make programs easier to type. *)
Coercion LitInt : Z >-> base_lit.
Coercion LitBool : bool >-> base_lit.
Coercion App : expr >-> Funclass.
Coercion Val : val >-> expr.
Coercion Var : string >-> expr.
(** Define some derived forms. *)
Notation Lam x e := (Rec BAnon x e) (only parsing).
Notation Let x e1 e2 := (App (Lam x e2) e1) (only parsing).
Notation Seq e1 e2 := (Let BAnon e1 e2) (only parsing).
Notation LamV x e := (RecV BAnon x e) (only parsing).
(** expressions use single constructors with a code to specify the specific
operation; here we wrap those in notations to make them easy to read and
write *)
Notation Pair := (BinOp PairOp).
Notation Fst := (UnOp FstOp).
Notation Snd := (UnOp SndOp).
Notation Alloc e := (HeapOp AllocOp e (Val (LitV LitUnit))).
Notation Load e := (HeapOp LoadOp e (Val (LitV LitUnit))).
Notation Store e1 e2 := (HeapOp StoreOp e1 e2).
Notation FAA := (HeapOp FaaOp).
(* Skip should be atomic, we sometimes open invariants around
it. Hence, we need to explicitly use LamV instead of e.g., Seq. *)
Notation Skip := (App (Val $ LamV BAnon (Val $ LitV LitUnit)) (Val $ LitV LitUnit)).
(* No scope for the values, does not conflict and scope is often not inferred
properly. *)
Notation "# l" := (LitV l%Z%V%stdpp) (at level 8, format "# l").
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
first. *)
Notation "( e1 , e2 , .. , en )" := (Pair .. (Pair e1 e2) .. en) : expr_scope.
Notation "( e1 , e2 , .. , en )" := (PairV .. (PairV e1 e2) .. en) : val_scope.
Notation "()" := LitUnit : val_scope.
Notation "! e" := (Load e%E) (at level 9, right associativity) : expr_scope.
Notation "'ref' e" := (Alloc e%E) (at level 10) : expr_scope.
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
Notation "e1 <- e2" := (Store e1%E e2%E) (at level 80) : expr_scope.
Notation "e1 + e2" := (BinOp PlusOp e1%E e2%E) : expr_scope.
(* The breaking point '/ ' makes sure that the body of the rec is indented
by two spaces in case the whole rec does not fit on a single line. *)
Notation "'rec:' f x := e" := (Rec f%binder x%binder e%E)
(at level 200, f at level 1, x at level 1, e at level 200,
format "'[' 'rec:' f x := '/ ' e ']'") : expr_scope.
Notation "'rec:' f x := e" := (RecV f%binder x%binder e%E)
(at level 200, f at level 1, x at level 1, e at level 200,
format "'[' 'rec:' f x := '/ ' e ']'") : val_scope.
Notation "'if:' e1 'then' e2 'else' e3" := (If e1%E e2%E e3%E)
(at level 200, e1, e2, e3 at level 200) : expr_scope.
(** Derived notions, in order of declaration. The notations for let and seq
are stated explicitly instead of relying on the Notations Let and Seq as
defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Notation "'rec:' f x y .. z := e" := (Rec f%binder x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
(at level 200, f, x, y, z at level 1, e at level 200,
format "'[' 'rec:' f x y .. z := '/ ' e ']'") : expr_scope.
Notation "'rec:' f x y .. z := e" := (RecV f%binder x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
(at level 200, f, x, y, z at level 1, e at level 200,
format "'[' 'rec:' f x y .. z := '/ ' e ']'") : val_scope.
(* The breaking point '/ ' makes sure that the body of the λ: is indented
by two spaces in case the whole λ: does not fit on a single line. *)
Notation "λ: x , e" := (Lam x%binder e%E)
(at level 200, x at level 1, e at level 200,
format "'[' 'λ:' x , '/ ' e ']'") : expr_scope.
Notation "λ: x y .. z , e" := (Lam x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
(at level 200, x, y, z at level 1, e at level 200,
format "'[' 'λ:' x y .. z , '/ ' e ']'") : expr_scope.
Notation "λ: x , e" := (LamV x%binder e%E)
(at level 200, x at level 1, e at level 200,
format "'[' 'λ:' x , '/ ' e ']'") : val_scope.
Notation "λ: x y .. z , e" := (LamV x%binder (Lam y%binder .. (Lam z%binder e%E) .. ))
(at level 200, x, y, z at level 1, e at level 200,
format "'[' 'λ:' x y .. z , '/ ' e ']'") : val_scope.
Notation "'let:' x := e1 'in' e2" := (Lam x%binder e2%E e1%E)
(at level 200, x at level 1, e1, e2 at level 200,
format "'[' 'let:' x := '[' e1 ']' 'in' '/' e2 ']'") : expr_scope.
Notation "e1 ;; e2" := (Lam BAnon e2%E e1%E)
(at level 100, e2 at level 200,
format "'[' '[hv' '[' e1 ']' ;; ']' '/' e2 ']'") : expr_scope.