-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsimple-codon-optimizer.py
654 lines (562 loc) · 25.1 KB
/
simple-codon-optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#!/usr/bin/env python3
'''
Simple Codon Optimizer
Copyright 2019 Thaddeus D. Seher (@tdseher)
'''
# Built-in imports
import sys
import random
from collections import defaultdict
import requests
import re
import itertools
import operator
import argparse
from itertools import product
class CustomHelpFormatter(argparse.HelpFormatter):
"""Help message formatter which retains any formatting in descriptions
and adds default values to argument help.
Only the name of this class is considered a public API. All the methods
provided by the class are considered an implementation detail.
"""
# This class combines:
# argparse.ArgumentDefaultsHelpFormatter
# argparse.RawDescriptionHelpFormatter
def _fill_text(self, text, width, indent):
return ''.join([indent + line for line in text.splitlines(True)])
def _get_help_string(self, action):
help = action.help
if '%(default)' not in action.help:
if action.default is not argparse.SUPPRESS:
defaulting_nargs = [argparse.OPTIONAL, argparse.ZERO_OR_MORE]
if action.option_strings or action.nargs in defaulting_nargs:
help += ' (default: %(default)s)'
return help
def parse_translation_tables(text):
'''
The format that is parsed:
1. The Standard Code (transl_table=1)
AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts = ---M------**--*----M---------------M----------------------------
Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
...
Returns dict.
'''
matches = re.findall(
r'\d+\.\s+(.*?)\s*\(transl_table=(\d+)\)' # Table name, id number
r'(?:.|\n|\r\n?)*?' # Line break and anything else
r'\s*AAs\s*\=\s*(\S+)' # Amino acids
r'(?:\n|\r\n?)' # Line break
r'\s*Starts\s*=\s*(\S+)' # Initiation and termination codons
r'(?:\n|\r\n?)' # Line break
r'\s*Base1\s*=\s*(\S+)' # First position
r'(?:\n|\r\n?)' # Line break
r'\s*Base2\s*=\s*(\S+)' # Second position
r'(?:\n|\r\n?)' # Line break
r'\s*Base3\s*=\s*(\S+)', # Third position
text,
re.MULTILINE
)
tables = {}
for m in matches:
name, table_id, aas, starts, base1, base2, base3 = m
aa_to_codon_d = defaultdict(list)
codon_to_aa = {}
for i in range(len(aas)):
aa = aas[i]
codon = base1[i] + base2[i] + base3[i]
aa_to_codon_d[aa].append(codon)
codon_to_aa[codon] = aa
# Convert to a regular dictionary with a tuple (instead of a list) as value
aa_to_codon = {}
for k, v in aa_to_codon_d.items():
aa_to_codon[k] = tuple(v)
tables[int(table_id)] = (aa_to_codon, codon_to_aa)
return tables
def download(url):
'''
Use requests library to get the text from the input URL.
'''
r = requests.get(url, allow_redirects=True)
return r.text
def nt_to_aa(sequence, table):
'''
Translate 'nt' string into 'aa' string given input codon to 'aa' table.
'''
aa_list = []
for i in range(len(sequence)//3):
codon = sequence[3*i:3*(i+1)]
aa_list.append(table[codon])
return ''.join(aa_list)
def is_url(text):
'''
Returns 'True' if the text is a URL.
'''
# Function unfinished
return False
def is_file(text):
'''
Returns 'True' if the text is a file.
'''
# Function unfinished
return True
def parse_format_a(text):
'''
Parses text resembling the following:
fields: [triplet] [frequency: per thousand] ([number])
UUU 15.3( 201) UCU 15.7( 207) UAU 15.0( 198) UGU 6.2( 82)
UUC 24.8( 327) UCC 15.6( 205) UAC 16.5( 217) UGC 7.7( 101)
UUA 4.7( 62) UCA 7.8( 102) UAA 0.9( 12) UGA 1.0( 13)
...
Returns dict.
'''
table = {}
for m in re.findall(r'([ACGTU]{3})\s+(\d+(?:\.\d*))?\(\s*(\d+)\)', text):
codon, freq_per_thousand, number = m[0], float(m[1]), int(m[2])
codon = codon.replace('U', 'T')
codon = codon.replace('u', 't')
table[codon] = number
return table
def parse_format_b(text):
'''
Parses this type of format:
id,value
taxid,5501
collapse,4
"#codon",17277496
"#CDS",39640
"GC%",50.78
"GC1%",55.85
"GC2%",44.36
"GC3%",52.13
TTT,291368
TTC,349064
TTA,140536
TTG,281524
CTT,337452
...
Returns dict.
'''
table = {}
for m in re.findall(r'([ACGTU]{3}),(\d+)', text):
codon, number = m[0], int(m[1])
codon = codon.replace('U', 'T')
codon = codon.replace('u', 't')
table[codon] = number
return table
def parse_format_c_old(text, taxid):
'''
Expects a header row, and one or more data rows
Division Assembly Taxid Species Organelle Translation Table # CDS # Codons GC% GC1% GC2% GC3% TTT TTC TTA TTG CTT CTC CTA CTG ATT ATC ATA ATG GTT GTC GTA GTG TAT TAC TAA TAG CAT CAC CAA CAG AAT AAC AAA AAG GAT GAC GAA GAG TCT TCC TCA TCG CCT CCC CCA CCG ACT ACC ACA ACG GCT GCC GCA GCG TGT TGC TGA TGG CGT CGC CGA CGG AGT AGC AGA AGG GGT GGC GGA GGG
refseq GCF_001560135.1 2285 Sulfolobus acidocaldarius genomic 11 2222 630256 37.4 44.66 34.12 33.43 16426 10487 22724 8884 10561 4921 12006 5609 18559 6976 31791 13196 16278 5953 17766 9203 18246 10880 1057 404 5332 2753 8051 6151 18800 11435 25417 21808 19934 10723 22786 20113 9875 4893 11260 2699 9911 3599 8936 1975 11237 4662 11584 3020 13581 4705 13301 3109 2632 1070 759 6161 875 250 749 232 10720 4413 16339 10368 15101 4397 16981 5632
refseq GCF_000337915.1 1227484 Halorubrum saccharovorum DSM 1137 genomic 11 3122 944967 68.22 70.52 45.73 88.4 1744 28488 1174 3486 3128 47657 1322 23536 2635 32777 1396 14801 4504 55008 1983 23947 2050 22062 479 752 1364 16193 2625 17216 2022 18969 3398 12634 10035 74485 14521 66439 1839 11412 1816 20789 1231 15801 1849 26336 2542 25702 2433 27142 4205 43379 4495 57612 2423 3758 1886 10155 3425 27542 7166 23443 2417 12720 1237 1426 7294 44759 9016 24887
...
Returns dict.
'''
table = {}
header = None
for line in text.splitlines():
sline = line.split('\t')
if (header == None):
header = sline
else:
if (taxid == int(sline[2])):
for p in itertools.product('ACGT', repeat=3):
codon = ''.join(p)
i = header.index(codon)
number = int(sline[i])
codon = codon.replace('U', 'T')
codon = codon.replace('u', 't')
table[codon] = number
return table
def parse_format_c(text):
'''
Expects a header row, and a single data row
Division Assembly Taxid Species Organelle Translation Table # CDS # Codons GC% GC1% GC2% GC3% TTT TTC TTA TTG CTT CTC CTA CTG ATT ATC ATA ATG GTT GTC GTA GTG TAT TAC TAA TAG CAT CAC CAA CAG AAT AAC AAA AAG GAT GAC GAA GAG TCT TCC TCA TCG CCT CCC CCA CCG ACT ACC ACA ACG GCT GCC GCA GCG TGT TGC TGA TGG CGT CGC CGA CGG AGT AGC AGA AGG GGT GGC GGA GGG
refseq GCF_001560135.1 2285 Sulfolobus acidocaldarius genomic 11 2222 630256 37.4 44.66 34.12 33.43 16426 10487 22724 8884 10561 4921 12006 5609 18559 6976 31791 13196 16278 5953 17766 9203 18246 10880 1057 404 5332 2753 8051 6151 18800 11435 25417 21808 19934 10723 22786 20113 9875 4893 11260 2699 9911 3599 8936 1975 11237 4662 11584 3020 13581 4705 13301 3109 2632 1070 759 6161 875 250 749 232 10720 4413 16339 10368 15101 4397 16981 5632
Returns dict.
'''
table = {}
header = None
for line in text.splitlines():
sline = line.split('\t')
if (header == None):
header = sline
else:
for p in itertools.product('ACGT', repeat=3):
codon = ''.join(p)
i = header.index(codon)
number = int(sline[i])
codon = codon.replace('U', 'T')
codon = codon.replace('u', 't')
table[codon] = number
return table
def parse_format_d(text):
'''
Expects 64 white space delimited rows in the following format:
AmAcid Codon Number /1000 Fraction
Gly GGG 22390.00 7.50 0.15
Gly GGA 43380.00 14.53 0.29
Gly GGU 71867.00 24.08 0.48
Returns dict.
'''
table = {}
for line in text.splitlines():
m = re.match(r'(?P<aa>\S{3})\s+(?P<codon>[ACGTU]{3})\s+(?P<number>\d+(?:\.\d*)?)\s+(?P<frequency_per_thousand>\d+(?:\.\d*)?)\s+(?P<relative_frequency>\d+(?:\.\d*)?)', line.rstrip())
if m:
codon = m.group('codon')
codon = codon.replace('U', 'T')
codon = codon.replace('u', 't')
number = int(round(float(m.group('number')), 0))
table[codon] = number
return table
def is_nt(sequence):
'''
Returns 'True' if the sequence uses exclusively nucleotide characters.
'''
# IUPAC Codes for Nucleotides
# Symbol Description Bases Represented
# A adenosine/adenine A---
# C cytidine/cytosine -C--
# G guanosine/guanine --G-
# T thymidine/thymine ---T
# U uridine/uracil ---U
# W weak A--T
# S strong -CG-
# M amino AC--
# K keto --GT
# R purine A-G-
# Y pyrimidine -C-T
# B not A -CGT
# D not C A-GT
# H not G AC-T
# V not T ACGT
# N or - any base (not a gap) ACGT
# The most common, non-standard nucleotide codes are "I" (Inosine) then "X" (xanthine)
for m in re.finditer(r'[^acgturymkwsbdhvnACGTURYMKWSBDHVN.-]', sequence):
if m:
return False
return True
def is_aa(sequence):
'''
Returns 'True' if the sequence uses exclusively amino acid characters.
'''
# IUPAC Codes for Amino Acids
# 1-Letter Code 3-Letter Code Amino Acid
# A Ala Alanine
# C Cys Cysteine
# D Asp Aspartic Acid
# E Glu Glutamic Acid
# F Phe Phenylalanine
# G Gly Glycine
# H His Histidine
# I Ile Isoleucine
# K Lys Lysine
# L Leu Leucine
# M Met Methionine
# N Asn Asparagine
# P Pro Proline
# Q Gln Glutamine
# R Arg Arginine
# S Ser Serine
# T Thr Threonine
# V Val Valine
# W Trp Tryptophan
# X Xaa Unspecified or unknown
# Y Tyr Tyrosine
# * STOP
# not included
# B Asx Aspartic Acid or Asparagine
# J Xle Leucine or Isoleucine
# O Pyl Pyrrolysine
# U Sec Selenocysteine
# Z Glx Glutamic Acid or Glutamine
for m in re.finditer(r'[^acdefghiklmnpqrstvwxyACDEFGHIKLMNPQRSTVWXY*.-]', sequence):
if m:
return False
return True
def stochastic_aa(aa_sequence, table):
'''
Converts input amino acid sequence into a stochastic nucleotide string.
'''
#table = {
# 'L': (('TTA', 'TTG', 'CTT', 'CTC', 'CTA', 'CTG'), (14.3, 13.0, 11.9, 10.2, 4.2, 48.4))
#}
nt_list = []
for aa in aa_sequence:
codons, frequencies = table[aa]
nt_list.append(random.choices(codons, weights=frequencies, k=1)[0])
return ''.join(nt_list)
def deterministic_aa(aa_sequence, table):
'''
Returns highest frequency nucleotide string.
'''
nt_list = []
for aa in aa_sequence:
codons, frequencies = table[aa]
nt_list.append(sorted(zip(frequencies, codons), reverse=True)[0][1])
return ''.join(nt_list)
def process(args, table_text, translation_table_number, sequence, ignore_mask=True):
# Download the translation tables
print("Loading translation tables.", file=sys.stderr) if not args.suppress else None
text = download('https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi')
translation_tables = parse_translation_tables(text)
aa_to_codon_table, codon_to_aa_table = translation_tables[translation_table_number]
# Add 'X' 'any' character to table
aa_to_codon_table['X'] = tuple(''.join(x) for x in itertools.product('ACGT', repeat=3))
# Process input sequence
sequence = sequence.replace(' ', '') # Remove any spaces
# Deal with case-sensitivity
if ignore_mask:
sequence = sequence.upper()
# Determine if input sequence is DNA/RNA or AA sequence
if is_nt(sequence):
print("Treating input sequence as 'nt'.", file=sys.stderr) if not args.suppress else None
# If it is a DNA sequence, then convert Ts to Us
sequence = sequence.replace('U', 'T')
sequence = sequence.replace('u', 't')
# Convert it to an aa sequence
aa_seq = nt_to_aa(sequence, codon_to_aa_table)
elif is_aa(sequence):
print("Treating input sequence as 'aa'.", file=sys.stderr) if not args.suppress else None
aa_seq = sequence
else:
sys.exit("Sequence contains invalid characters.")
usage_table = {}
# Try parsing the table each way to store codon usage
print("Parsing input file.", file=sys.stderr) if not args.suppress else None
for parse_type in [parse_format_a, parse_format_b, parse_format_c, parse_format_d]:
if (len(usage_table) != 64):
try:
usage_table = parse_type(table_text)
except:
pass
else:
break
if (len(usage_table) == 64):
print("Input file is a codon usage table.", file=sys.stderr) if not args.suppress else None
use_codon_table(args, usage_table, aa_to_codon_table, codon_to_aa_table, aa_seq)
else:
print("No valid codon usage table discovered. Assuming input is an expression table.", file=sys.stderr) if not args.suppress else None
expression_table = load_expression_data(table_text)
use_expression_table(args, expression_table, aa_to_codon_table, codon_to_aa_table, aa_seq)
print("Simple Codon Optimizer finished.", file=sys.stderr) if not args.suppress else None
def use_codon_table(args, usage_table, aa_to_codon_table, codon_to_aa_table, aa_seq):
# Count the sum of all codons
n = sum(usage_table.values())
# Let user know if the table was parsed successfully
print('Usage table:', file=sys.stderr) if not args.suppress else None
for k, v in usage_table.items():
print(k, v, v/n, file=sys.stderr) if not args.suppress else None
# Link codon frequencies
# aa_to_codon_freq_table = {
# 'L': (('TTA', 'TTG', 'CTT', 'CTC', 'CTA', 'CTG'), (14.3, 13.0, 11.9, 10.2, 4.2, 48.4)),
# }
aa_to_codon_freq_table = {}
for aa, codons in aa_to_codon_table.items():
freqs = []
for codon in codons:
freqs.append(usage_table[codon]/n)
aa_to_codon_freq_table[aa] = (codons, tuple(freqs))
# Link aa frequencies
# codon_to_aa_freq_table = {
# 'TTA': ('L', 14.3),
# 'TTG': ('L', 13.0),
# 'CTT': ('L', 11.9),
# 'CTC': ('L', 10.2),
# 'CTA': ('L', 4.2),
# 'CTG': ('L', 48.4),
# }
codon_to_aa_freq_table = {}
for codon, aa in codon_to_aa_table.items():
codon_to_aa_freq_table[codon] = (aa, usage_table[codon]/n)
# Let user know the aa sequence that will be translated
print('Confusion matrix with potential codons for each aa in sequence.', file=sys.stderr) if not args.suppress else None
columns = build_usage_columns(aa_seq, aa_to_codon_freq_table)
print(potential_codons_output(aa_seq, columns), file=sys.stderr) if not args.suppress else None
# Once there is an aa sequence, then for each character,
# pick an optimal codon
output = defaultdict(int)
samples = args.samples
if args.deterministic:
samples = 1
output[deterministic_aa(aa_seq, aa_to_codon_freq_table)] += 1
else:
for i in range(samples):
output[stochastic_aa(aa_seq, aa_to_codon_freq_table)] += 1
# Write results to STDOUT
#for k, v in sorted(output, key=lambda x: output[x], reverse=True):
for k, v in sorted(output.items(), key=operator.itemgetter(1), reverse=True)[:max(0, args.display)]:
print(v/samples, k)
def use_expression_table(args, data, aa_to_codon_table, codon_to_aa_table, aa_seq):
model = build_glm(data)
# Let user know the aa sequence that will be translated
print('Confusion matrix with potential codons for each aa in sequence.', file=sys.stderr) if not args.suppress else None
columns = build_expression_columns(aa_seq, aa_to_codon_table, model)
print(potential_codons_output(aa_seq, columns), file=sys.stderr) if not args.suppress else None
def build_usage_columns(aa_sequence, table):
columns = []
for i, aa in enumerate(aa_sequence):
codons, freqs = table[aa]
cf = sorted(zip(freqs, codons), reverse=True)
columns.append([x[1] for x in cf])
return columns
def build_expression_columns(aa_sequence, aa_to_codon_table, model):
import pandas as pd
columns = []
for i, aa in enumerate(aa_sequence):
codons = aa_to_codon_table[aa]
scores = list(model.predict(pd.DataFrame({'CODON': codons, 'POSITION': [i]*len(codons)})))
cs = sorted(zip(scores, codons), reverse=True)
columns.append([x[1] for x in cs])
return columns
def potential_codons_output(aa_sequence, columns):
'''
Returns multi-line string formatted as follows:
aa A S R W L A Q C
high GCT TCC CGC TGG CTC GCT CAG TGC
GCC TCT CGA CTT GCC CAA TGT
GCA AGC AGA TTG GCA
GCG TCA CGT CTG GCG
TCG CGG CTA
low AGT AGG TTA
'''
outputs = []
outputs.append(' aa ')
for i, aa in enumerate(aa_sequence):
outputs[-1] += ' ' + aa + ' '
outputs.append('high ')
for i, aa in enumerate(aa_sequence):
if (len(columns[i]) > 0):
outputs[-1] += ' ' + columns[i].pop(0)
else:
outputs[-1] += ' '
while any([len(x)>1 for x in columns]):
outputs.append(' ')
for i, aa in enumerate(aa_sequence):
if (len(columns[i]) > 0):
outputs[-1] += ' ' + columns[i].pop(0)
else:
outputs[-1] += ' '
outputs.append('low ')
for i, aa in enumerate(aa_sequence):
if (len(columns[i]) > 0):
outputs[-1] += ' ' + columns[i].pop(0)
else:
outputs[-1] += ' '
return '\n'.join(outputs)
def build_glm(data):
# Third-party imports
import pandas as pd
import statsmodels.formula.api as smf
# Make list of all possible codons
all_codons = [''.join(x) for x in product('ACGT', repeat=3)] # All 64 codons
# Convert data to Pandas 'DataFrame'
codon_list = []
position_list = []
expression_list = []
for codon, position, expression in data:
codon_list.append(codon)
position_list.append(position)
expression_list.append(expression)
pd_codon_list = pd.Categorical(codon_list, categories=all_codons, ordered=False)
df = pd.DataFrame({
'CODON': pd_codon_list,
'POSITION': position_list,
'EXPRESSION': expression_list,
})
# Build the GLM
model = smf.ols(formula='EXPRESSION ~ CODON * POSITION + 0', data=df)
res = model.fit()
return res
def load_expression_data(text):
data1 = []
for line in text.splitlines():
line = line.rstrip()
if (len(line) > 0):
if not re.match('\s*#', line):
sline = line.split('\t')
gene = sline[0]
expression = float(sline[1])
sequence = re.sub(r'[^ACGTRYMKWSBDHVN]', '', sline[2].upper()) # Convert to upper-case, and remove invalid characters
sequence_list = [sequence[x:x+3] for x in range(0, len(sequence), 3)] # Convert to list
if (len(sequence_list[-1]) != 3): # Remove incomplete codons
sequence_list.pop()
data1.append((gene, expression, tuple(sequence_list)))
data2 = []
for gene, expression, codons in data1:
for i, codon in enumerate(codons):
data2.append((codon, i, expression))
# (codon, position, expression)
# ('GCA', 0, 10)
# ('TAC', 1, 10)
# ('GCA', 2, 10)
return data2
def parse_arguments():
# Create parser
parser = argparse.ArgumentParser(
description=(
"description:" "\n"
" Simple program for optimizing a protein-coding sequence." "\n" "\n"
" Several formats for codon usage table are supported (See included example files)." "\n"
" Additionally, a gene expression table can be provided to base codon optimality from." "\n" "\n"
" Output is in the format (FREQUENCY, SEQUENCE)." "\n" "\n"
" The program will first check to see if the input SEQUENCE is composed" "\n"
" exclusively of 'nt' characters. If it is not, then it will check to" "\n"
" see if it is made of 'aa' characters. Space (' ') characters are " "\n"
" allowed in SEQUENCE." "\n"
),
epilog=(
"examples:" "\n"
" python3 simple-codon-optimizer.py examples/5501_codons.txt 1 ASRWLAQC" "\n"
' python3 simple-codon-optimizer.py "examples/Codon usage table 5501.html" 1 "GCA TCA AGA TGG CTG GCG CAA TGT"' "\n"
' python3 simple-codon-optimizer.py examples/C_albicans_codon_usage.tab 12 EGRGSLLTCGDVEENPGP --deterministic' "\n"
),
formatter_class=CustomHelpFormatter
)
# Change the help text of the "-h" flag
parser._actions[0].help='Show this help message and exit.'
parser.add_argument('usage_table', metavar='USAGE/EXPRESSION_TABLE', type=str,
help='File containing either the codon usage table (counts), or a gene expression table.')
parser.add_argument('translation_table', metavar='TRANSLATION_TABLE', type=int,
help='The translation table id.')
parser.add_argument('sequence', metavar='SEQUENCE', type=str,
help="'nt' or 'aa' sequence to optimize.")
parser.add_argument('--deterministic', action='store_true',
help='Instead of calculating a distribution of sequences, \
just find the single most-optimal sequence.')
parser.add_argument('--samples', metavar='N', type=int, default=100000,
help='Number of sequences to generate.')
parser.add_argument('--display', metavar='N', type=int, default=10,
help='Number of output sequences to display.')
parser.add_argument('--suppress', action='store_true',
help='Suppress STDERR messages.')
args = parser.parse_args()
return args
def main():
args = parse_arguments()
# User specifies the table via text file or url
# Format 'a' downloaded from r'https://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=5501'
#usage_table = r'Codon usage table 5501.html'
# Format 'b' downloaded from r'https://hive.biochemistry.gwu.edu/dna.cgi?cmd=ionTaxidCollapse&svcType=svc-refseq-processor&fileSource=refseq_species.tsv&taxid=5501&filterInColName=[%22Organelle%22]&filterIn=[%22genomic%22]&searchDeep=true&raw=1&raw=1'
#usage_table = '5501_codons.txt'
# Format 'c' downloaded from r'https://hive.biochemistry.gwu.edu/dna.cgi?cmd=objFile&ids=569942&filename=refseq_species.tsv&raw=1'
#usage_table = r'o569942-refseq-GCF_000149335.2.txt'
# User specifies the translation table
#translation_table = 1
# User specifies either the aa sequence, RNA exon sequence, or genomic DNA sequence
#sequence = ' A S R w L A Q C'
#sequence = 'GCA TCA AGA TGG CTG GCG CAA TGT'
if is_url(args.usage_table):
# Download this url
table_text = download(url)
elif is_file(args.usage_table):
# Open this file
with open(args.usage_table,'r') as flo:
table_text = flo.read()
# Translate
process(args, table_text, args.translation_table, args.sequence)
if (__name__ == '__main__'):
main()