-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmnemonics_helper.py
387 lines (336 loc) · 12 KB
/
mnemonics_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
"""
Medical mnemonics generation tool using LLMs.
This module provides functionality to generate and manage mnemonic devices for medical concepts
using large language models. It includes semantic search to find similar existing mnemonics
and an interactive CLI interface for selecting from multiple generated options.
"""
from pathlib import Path
import litellm
import json
from typing import List
import numpy as np
import fire
from sklearn.metrics.pairwise import cosine_similarity
import asyncio
import joblib
from tqdm.asyncio import tqdm_asyncio
from utils.llm import model_name_matcher
from prompt_toolkit import PromptSession
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.application import Application
from prompt_toolkit.key_binding import KeyBindings
from prompt_toolkit.layout import Layout
from prompt_toolkit.layout.containers import HSplit, Window
from prompt_toolkit.layout.controls import FormattedTextControl
from iterator_cacher import IteratorCacher
# anchor_file = Path("./author_dir/anchors.json")
anchor_file = Path("/home/g/Documents/Perso/Bordel/git_repository/AnkiAiUtils/author_dir/anchors.json")
new_anchor_file = Path("/home/g/Documents/Perso/Bordel/git_repository/AnkiAiUtils/author_dir/new_anchors.json")
system_prompt = """
You are my best assistant. Your task is to generate new mnemonics to help me in medical school.
You follow these rules:
- Answer in the same language as the question.
- Answer only 1 mnemonic.
- The new mnemonics have to be easy to remember, so funny or tragic.
- The new mnemonics can only contain common words and can't use technical words.
- The new mnemonics can't contain digits.
- Directly answer the mnemonics, don't try to be polite, don't acknowledge those rules. Don't wrap your answer. Don't wrap the mnemonic in quotation signs.
- After your mnemonic, mention a single sentence between parentheses where you explain your reasonning. This will help me memorize it later.
- Your full answer must remain in a single line.
""".strip()
def prompt(
examples: dict,
question: str,
) -> str:
"""
Generate a prompt for the LLM to create a mnemonic device.
Parameters
----------
examples : dict
Dictionary of existing mnemonics to use as examples, where keys are concepts
and values are their corresponding mnemonic devices
question : str
The concept/topic for which to generate a new mnemonic device
Returns
-------
str
The formatted prompt containing the system instructions, examples, and question
"""
message = f"La notion pour laquelle j'ai besoin d'un moyen mnémotechnique est: '{question}'"
message += "\nVoici des exemples de moyen mnémotechniques que j'utilise déjà:\n'''\n"
ex = []
for k, v in examples.items():
ex.append(f"- '{k}': '{v}'")
# ex = ex[::-1] # reverse sorting order to have the end be closer to the question
message += "\n".join(ex)
message += f"\n'''\n\nMaintenant, suit les règles que je t'ai donné et suggère moi un moyen mnemotechnique adéquats. Je rappelle que la notion est: '{question}'"
return message
anchors = json.loads(anchor_file.read_text())
assert anchors
try:
new_anchors = json.loads(new_anchor_file.read_text())
except Exception as err:
print(f"Not loading new anchors: '{err}'")
new_anchors = {}
mem_object = joblib.Memory(".cache/iterator_cached_embeddings")
def embed(
text_list: List[str],
model: str = "openai/text-embedding-3-small",
):
"""
Generate embeddings for a list of text strings using a specified model.
Parameters
----------
text_list : List[str]
List of text strings to embed
model : str, optional
Name of the embedding model to use, by default "openai/text-embedding-3-small"
Returns
-------
numpy.ndarray
Array of embeddings, one per input text
"""
assert text_list
assert all(t.strip() for t in text_list)
vec = litellm.embedding(
model=model,
input=text_list,
)
embeds = [
np.array(elem["embedding"]).reshape(1, -1)
for elem in vec.to_dict()["data"]
]
embeds = np.array(embeds)
return embeds
embed = IteratorCacher(
memory_object=mem_object,
iter_list=["text_list"],
verbose=True,
res_to_list = lambda ar: ar.tolist(),
)(embed)
def cli(
top_k: int,
n_gen: int,
query: str,
model: str,
embed_model: str,
):
"""
Run the interactive CLI interface for mnemonic generation.
Parameters
----------
top_k : int
Number of similar existing mnemonics to use as examples
n_gen : int
Number of new mnemonics to generate per query
query : str
Initial query to process, if any
model : str
Name of the LLM model to use for generation
embed_model : str
Name of the model to use for text embeddings
"""
session = PromptSession()
if model.startswith("openrouter"):
model_params = litellm.get_supported_openai_params(
model_name_matcher(
model.split("/", 1)[1]
)
)
else:
model_params = litellm.get_supported_openai_params(model)
while True:
# refresh db
for k, v in new_anchors.items():
assert k not in anchors.keys()
assert v not in anchors.values()
anchors_list = sorted(list(anchors.keys()) + list(new_anchors.keys()))
db = np.array(
embed(
text_list=anchors_list,
model=embed_model,
)
)
if query is not None:
ans, query = query, None
query = None
else:
ans = session.prompt(
"Enter the string your want mnemonics for:\n>",
vi_mode=True,
multiline=False,
completer=WordCompleter(anchors_list),
).strip()
assert ans
if ans in anchors_list:
if ans in anchors:
print(f"Already part of anchors: '{anchors[ans]}'")
elif ans in new_anchors:
print(f"Already part of anchors: '{new_anchors[ans]}'")
else:
raise ValueError(ans)
vec = embed(text_list=[ans])
assert len(vec) == 1
vec = vec[0]
if isinstance(vec, list):
vec = np.array(vec)
sims = cosine_similarity(
vec.squeeze().reshape(1, -1),
db.squeeze(),
)
best_index = np.argsort(sims).tolist()[0][-top_k:]
best_k = [anchors_list[b] for b in best_index]
best_a = [anchors[k] if k in anchors else new_anchors[k] for k in best_k]
best = {k:v for k, v in zip(best_k, best_a)}
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": prompt(examples=best, question=ans),
}
]
if "n" in model_params:
resp = litellm.completion(
model=model,
messages=messages,
num_retries=3,
verbose=True,
n=n_gen,
temperature=1,
).json()
texts = [elem["message"]["content"] for elem in resp["choices"]]
else:
async def async_completion(model, messages):
loop = asyncio.get_event_loop()
resp = await loop.run_in_executor(None, lambda: litellm.completion(
model=model,
messages=messages,
num_retries=3,
verbose=True,
temperature=1,
).json())
return resp["choices"][0]["message"]["content"]
async def generate_texts_async(n_gen, model, messages):
tasks = [async_completion(model, messages) for _ in range(n_gen)]
return await tqdm_asyncio.gather(*tasks, desc="Generating")
def generate_texts(n_gen, model, messages):
"""
Generate multiple mnemonic texts using async calls to the LLM.
Parameters
----------
n_gen : int
Number of texts to generate
model : str
Name of the LLM model to use
messages : List[Dict]
Prompt messages to send to the model
Returns
-------
List[str]
List of generated mnemonic texts
"""
return asyncio.run(generate_texts_async(n_gen, model, messages))
# Usage (inside your synchronous function):
texts = asyncio.run(generate_texts_async(n_gen, model, messages))
texts.append("Cancel")
selected_index = [0]
def get_menu_text():
"""
Format the menu text for the CLI interface.
Returns
-------
List[Tuple[str, str]]
List of formatted text entries with their styles
"""
out = []
for i, item in enumerate(texts):
n = ' ' * len(str(n_gen)) if item == "Cancel" else str(i + 1)
sign = ">" if i == selected_index[0] else " "
line = f"{sign} {n} {item}\n\n"
out.append(("class:menu-item", line))
return out
kb = KeyBindings()
@kb.add("k")
@kb.add("up")
def move_up(event):
selected_index[0] = max(selected_index[0] - 1, 0)
@kb.add("j")
@kb.add("down")
def move_down(event):
selected_index[0] = min(selected_index[0] + 1, len(texts) - 1)
@kb.add("enter")
def select(event):
event.app.exit()
@kb.add("c-c")
@kb.add("q")
def quit(event):
print("Quit.")
raise SystemExit()
for i in range(10):
@kb.add(str(i))
def _(event, i=i):
i = min(i, len(texts))
i = max(0, i)
selected_index[0] = i
menu_control = FormattedTextControl(get_menu_text)
menu_window = Window(
content=menu_control,
always_hide_cursor=True,
wrap_lines=True,
)
root_container = HSplit([menu_window])
layout = Layout(root_container)
app = Application(layout=layout, key_bindings=kb, full_screen=False)
print("\n")
try:
app.run()
except EOFError:
raise SystemExit()
new_anc = texts[selected_index[0]]
if new_anc == "Cancel":
print("Cancelled")
continue
# store to new_anchors
new_anchors[ans] = new_anc
with open(new_anchor_file, "w") as f:
json.dump(new_anchors, f, indent=4, ensure_ascii=False)
def start(
top_k: int = 100,
n_gen: int = 10,
query: str = None,
model: str = "openrouter/anthropic/claude-3.5-sonnet:beta",
embed_model: str = "openai/text-embedding-3-small",
gui: bool = False,
):
"""
Entry point for the mnemonic generation tool.
Parameters
----------
top_k : int, optional
Number of similar existing mnemonics to use, by default 100
n_gen : int, optional
Number of new mnemonics to generate per query, by default 10
query : str, optional
Initial query to process, by default None
model : str, optional
LLM model name, by default "openrouter/anthropic/claude-3.5-sonnet:beta"
embed_model : str, optional
Embedding model name, by default "openai/text-embedding-3-small"
gui : bool, optional
Whether to use GUI interface (not implemented), by default False
"""
if not gui:
cli(
top_k=top_k,
n_gen=n_gen,
query=query,
model=model,
embed_model=embed_model,
)
else:
raise NotImplementedError()
if __name__ == "__main__":
fire.Fire(start)