-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathmetrics.py
executable file
·271 lines (199 loc) · 10.4 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from torch.functional import Tensor
from general_utils import log
from collections import defaultdict
import numpy as np
import torch
from torch.nn import functional as nnf
class BaseMetric(object):
def __init__(self, metric_names, pred_range=None, gt_index=0, pred_index=0, eval_intermediate=True,
eval_validation=True):
self._names = tuple(metric_names)
self._eval_intermediate = eval_intermediate
self._eval_validation = eval_validation
self._pred_range = pred_range
self._pred_index = pred_index
self._gt_index = gt_index
self.predictions = []
self.ground_truths = []
def eval_intermediate(self):
return self._eval_intermediate
def eval_validation(self):
return self._eval_validation
def names(self):
return self._names
def add(self, predictions, ground_truth):
raise NotImplementedError
def value(self):
raise NotImplementedError
def scores(self):
# similar to value but returns dict
value = self.value()
if type(value) == dict:
return value
else:
assert type(value) in {list, tuple}
return list(zip(self.names(), self.value()))
def _get_pred_gt(self, predictions, ground_truth):
pred = predictions[self._pred_index]
gt = ground_truth[self._gt_index]
if self._pred_range is not None:
pred = pred[:, self._pred_range[0]: self._pred_range[1]]
return pred, gt
class FixedIntervalMetrics(BaseMetric):
def __init__(self, sigmoid=False, ignore_mask=False, resize_to=None,
resize_pred=None, n_values=51, custom_threshold=None):
super().__init__(('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'))
self.intersections = []
self.unions = []
# self.threshold = threshold
self.sigmoid = sigmoid
self.resize_to = resize_to
self.resize_pred = resize_pred # resize prediction to match ground truth
self.class_count = defaultdict(lambda: 0)
self.per_class = defaultdict(lambda : [0,0])
self.ignore_mask = ignore_mask
self.custom_threshold = custom_threshold
self.scores_ap = []
self.scores_iou = []
self.gts, self.preds = [], []
self.classes = []
# [1:-1] ignores 0 and 1
self.threshold_values = np.linspace(0, 1, n_values)[1:-1]
self.metrics = dict(tp=[], fp=[], fn=[], tn=[])
def add(self, pred, gt):
pred_batch = pred[0].cpu()
if self.sigmoid:
pred_batch = torch.sigmoid(pred_batch)
gt_batch = gt[0].cpu()
mask_batch = gt[1] if len(gt) > 1 and not self.ignore_mask and gt[1].numel() > 0 else ([None] * len(pred_batch))
cls_batch = gt[2] if len(gt) > 2 else [None] * len(pred_batch)
if self.resize_to is not None:
gt_batch = nnf.interpolate(gt_batch, self.resize_to, mode='nearest')
pred_batch = nnf.interpolate(pred_batch, self.resize_to, mode='bilinear', align_corners=False)
if isinstance(cls_batch, torch.Tensor):
cls_batch = cls_batch.cpu().numpy().tolist()
assert len(gt_batch) == len(pred_batch) == len(cls_batch), f'{len(gt_batch)} {len(pred_batch)} {len(cls_batch)}'
for predictions, ground_truth, mask, cls in zip(pred_batch, gt_batch, mask_batch, cls_batch):
if self.resize_pred:
predictions = nnf.interpolate(predictions.unsqueeze(0).float(), size=ground_truth.size()[-2:], mode='bilinear', align_corners=True)
p = predictions.flatten()
g = ground_truth.flatten()
assert len(p) == len(g)
if mask is not None:
m = mask.flatten().bool()
p = p[m]
g = g[m]
p_sorted = p.sort()
p = p_sorted.values
g = g[p_sorted.indices]
tps, fps, fns, tns = [], [], [], []
for thresh in self.threshold_values:
valid = torch.where(p > thresh)[0]
if len(valid) > 0:
n = int(valid[0])
else:
n = len(g)
fn = int(g[:n].sum())
tp = int(g[n:].sum())
fns += [fn]
tns += [n - fn]
tps += [tp]
fps += [len(g) - n - tp]
self.metrics['tp'] += [tps]
self.metrics['fp'] += [fps]
self.metrics['fn'] += [fns]
self.metrics['tn'] += [tns]
self.classes += [cls.item() if isinstance(cls, torch.Tensor) else cls]
def value(self):
import time
t_start = time.time()
if set(self.classes) == set([None]):
all_classes = None
log.warning('classes were not provided, cannot compute mIoU')
else:
all_classes = set(int(c) for c in self.classes)
# log.info(f'compute metrics for {len(all_classes)} classes')
summed = {k: [sum([self.metrics[k][i][j]
for i in range(len(self.metrics[k]))])
for j in range(len(self.threshold_values))]
for k in self.metrics.keys()}
if all_classes is not None:
assert len(self.classes) == len(self.metrics['tp']) == len(self.metrics['fn'])
# group by class
metrics_by_class = {c: {k: [] for k in self.metrics.keys()} for c in all_classes}
for i in range(len(self.metrics['tp'])):
for k in self.metrics.keys():
metrics_by_class[self.classes[i]][k] += [self.metrics[k][i]]
# sum over all instances within the classes
summed_by_cls = {k: {c: np.array(metrics_by_class[c][k]).sum(0).tolist() for c in all_classes} for k in self.metrics.keys()}
# Compute average precision
assert (np.array(summed['fp']) + np.array(summed['tp']) ).sum(), 'no predictions is made'
# only consider values where a prediction is made
precisions = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j]) for j in range(len(self.threshold_values))
if summed['tp'][j] + summed['fp'][j] > 0]
recalls = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))
if summed['tp'][j] + summed['fp'][j] > 0]
# remove duplicate recall-precision-pairs (and sort by recall value)
recalls, precisions = zip(*sorted(list(set(zip(recalls, precisions))), key=lambda x: x[0]))
from scipy.integrate import simps
ap = simps(precisions, recalls)
# Compute best IoU
fgiou_scores = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))]
biniou_scores = [
0.5*(summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j])) +
0.5*(summed['tn'][j] / (1 + summed['tn'][j] + summed['fn'][j] + summed['fp'][j]))
for j in range(len(self.threshold_values))
]
index_0p5 = self.threshold_values.tolist().index(0.5)
index_0p1 = self.threshold_values.tolist().index(0.1)
index_0p2 = self.threshold_values.tolist().index(0.2)
index_0p3 = self.threshold_values.tolist().index(0.3)
if self.custom_threshold is not None:
index_ct = self.threshold_values.tolist().index(self.custom_threshold)
if all_classes is not None:
# mean IoU
mean_ious = [np.mean([summed_by_cls['tp'][c][j] / (1 + summed_by_cls['tp'][c][j] + summed_by_cls['fp'][c][j] + summed_by_cls['fn'][c][j])
for c in all_classes])
for j in range(len(self.threshold_values))]
mean_iou_dict = {
'miou_best': max(mean_ious) if all_classes is not None else None,
'miou_0.5': mean_ious[index_0p5] if all_classes is not None else None,
'miou_0.1': mean_ious[index_0p1] if all_classes is not None else None,
'miou_0.2': mean_ious[index_0p2] if all_classes is not None else None,
'miou_0.3': mean_ious[index_0p3] if all_classes is not None else None,
'miou_best_t': self.threshold_values[np.argmax(mean_ious)],
'mean_iou_ct': mean_ious[index_ct] if all_classes is not None and self.custom_threshold is not None else None,
'mean_iou_scores': mean_ious,
}
print(f'metric computation on {(len(all_classes) if all_classes is not None else "no")} classes took {time.time() - t_start:.1f}s')
return {
'ap': ap,
# fgiou
'fgiou_best': max(fgiou_scores),
'fgiou_0.5': fgiou_scores[index_0p5],
'fgiou_0.1': fgiou_scores[index_0p1],
'fgiou_0.2': fgiou_scores[index_0p2],
'fgiou_0.3': fgiou_scores[index_0p3],
'fgiou_best_t': self.threshold_values[np.argmax(fgiou_scores)],
# mean iou
# biniou
'biniou_best': max(biniou_scores),
'biniou_0.5': biniou_scores[index_0p5],
'biniou_0.1': biniou_scores[index_0p1],
'biniou_0.2': biniou_scores[index_0p2],
'biniou_0.3': biniou_scores[index_0p3],
'biniou_best_t': self.threshold_values[np.argmax(biniou_scores)],
# custom threshold
'fgiou_ct': fgiou_scores[index_ct] if self.custom_threshold is not None else None,
'biniou_ct': biniou_scores[index_ct] if self.custom_threshold is not None else None,
'ct': self.custom_threshold,
# statistics
'fgiou_scores': fgiou_scores,
'biniou_scores': biniou_scores,
'precision_recall_curve': sorted(list(set(zip(recalls, precisions)))),
'summed_statistics': summed,
'summed_by_cls_statistics': summed_by_cls,
**mean_iou_dict
}
# ('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'
# return ap, best_fgiou, best_mean_iou, iou_0p5, iou_0p1, mean_iou_0p5, mean_iou_0p1, best_biniou, biniou0p5, best_fgiou_thresh, {'summed': summed, 'summed_by_cls': summed_by_cls}