-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
558 lines (471 loc) · 26.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
from sys import exit
from typing import Dict, Any
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.utils as pyg_utils
from math import ceil
from torch.nn import BatchNorm1d, ModuleList
from torch_geometric.nn import DenseGraphConv, dense_diff_pool, PNAConv, BatchNorm, DenseSAGEConv, GraphSizeNorm
from torch_geometric.nn import MetaLayer, GraphNorm
from torch_geometric.nn import global_mean_pool, GCNConv, GATConv, global_add_pool
from torch_geometric.utils import to_dense_batch
from torch_scatter import scatter_mean
from tcn import TemporalConvNet
from utils import ConvStrategy, PoolingStrategy, EncodingStrategy, SweepType
class GNN(torch.nn.Module):
def __init__(self,
in_channels,
hidden_channels,
out_channels,
run_cfg,
lin=True,
aggr='add'):
super(GNN, self).__init__()
self.dp_norm = run_cfg['dp_norm']
if run_cfg['dp_norm'] == 'batchnorm':
self.bn1 = torch.nn.BatchNorm1d(hidden_channels)
self.bn2 = torch.nn.BatchNorm1d(hidden_channels)
self.bn3 = torch.nn.BatchNorm1d(out_channels)
elif run_cfg['dp_norm'] == 'graphnorm':
self.bn1 = GraphNorm(hidden_channels)
self.bn2 = GraphNorm(hidden_channels)
self.bn3 = GraphNorm(out_channels)
elif run_cfg['dp_norm'] == 'graphsizenorm':
self.bn1 = GraphSizeNorm()
self.bn2 = GraphSizeNorm()
self.bn3 = GraphSizeNorm()
self.conv1 = DenseGraphConv(in_channels, hidden_channels, aggr=aggr)
self.conv2 = DenseGraphConv(hidden_channels, hidden_channels, aggr=aggr)
self.conv3 = DenseGraphConv(hidden_channels, out_channels, aggr=aggr)
if lin is True:
self.lin = torch.nn.Linear(2 * hidden_channels + out_channels,
out_channels)
else:
self.lin = None
def bn(self, i, x):
batch_size, num_nodes, num_channels = x.size()
batch = torch.repeat_interleave(torch.full((batch_size,), num_nodes, dtype=torch.long)).to(x.device)
x = x.view(-1, num_channels)
if self.dp_norm == 'batchnorm':
x = getattr(self, 'bn{}'.format(i))(x)
else:
x = getattr(self, 'bn{}'.format(i))(x, batch)
x = x.view(batch_size, num_nodes, num_channels)
return x
def forward(self, x, adj, mask=None):
# Mask will always be true in our case because graphs have all fixed number of nodes.
x0 = x
if self.dp_norm == 'nonorm':
x1 = F.relu(self.conv1(x0, adj, mask))
x2 = F.relu(self.conv2(x1, adj, mask))
x3 = F.relu(self.conv3(x2, adj, mask))
else:
x1 = self.bn(1, F.relu(self.conv1(x0, adj, mask)))
x2 = self.bn(2, F.relu(self.conv2(x1, adj, mask)))
x3 = self.bn(3, F.relu(self.conv3(x2, adj, mask)))
x = torch.cat([x1, x2, x3], dim=-1)
if self.lin is not None:
x = F.relu(self.lin(x))
return x
class DiffPoolLayer(torch.nn.Module):
def __init__(self, max_num_nodes, num_init_feats, aggr, run_cfg):
super(DiffPoolLayer, self).__init__()
self.aggr = aggr
if self.aggr == 'improved':
aggr = 'add'
self.init_feats = num_init_feats
self.max_nodes = max_num_nodes
self.INTERN_EMBED_SIZE = self.init_feats # ceil(self.init_feats / 3)
num_nodes = max(1, ceil(run_cfg['dp_perc_retaining'] * self.max_nodes))
self.gnn1_pool = GNN(self.init_feats, self.INTERN_EMBED_SIZE, num_nodes, aggr=aggr, run_cfg=run_cfg)
self.gnn1_embed = GNN(self.init_feats, self.INTERN_EMBED_SIZE, self.INTERN_EMBED_SIZE, lin=False, aggr=aggr, run_cfg=run_cfg)
num_nodes = max(1, ceil(run_cfg['dp_perc_retaining'] * num_nodes))
self.final_num_nodes = num_nodes
self.gnn2_pool = GNN(3 * self.INTERN_EMBED_SIZE, self.INTERN_EMBED_SIZE, num_nodes, aggr=aggr, run_cfg=run_cfg)
self.gnn2_embed = GNN(3 * self.INTERN_EMBED_SIZE, self.INTERN_EMBED_SIZE, self.INTERN_EMBED_SIZE, lin=False, aggr=aggr, run_cfg=run_cfg)
self.gnn3_embed = GNN(3 * self.INTERN_EMBED_SIZE, self.INTERN_EMBED_SIZE, self.INTERN_EMBED_SIZE, lin=False, aggr=aggr, run_cfg=run_cfg)
if self.aggr == 'improved':
self.final_mlp = nn.Linear(self.final_num_nodes * 3 * self.INTERN_EMBED_SIZE , 3 * self.INTERN_EMBED_SIZE)
def forward(self, x, adj, mask=None):
s = self.gnn1_pool(x, adj, mask)
x = self.gnn1_embed(x, adj, mask)
x, adj, l1, e1 = dense_diff_pool(x, adj, s, mask)
s = self.gnn2_pool(x, adj)
x = self.gnn2_embed(x, adj)
x, adj, l2, e2 = dense_diff_pool(x, adj, s)
x = self.gnn3_embed(x, adj)
if self.aggr == 'add':
x = x.sum(dim=1)
elif self.aggr == 'improved':
x = self.final_mlp(x.reshape(-1, self.final_num_nodes * 3 * self.INTERN_EMBED_SIZE))
else:
x = x.mean(dim=1)
return x, l1 + l2, e1 + e2
class EdgeModel(torch.nn.Module):
def __init__(self, num_node_features, num_edge_features, activation='relu'):
super().__init__()
self.input_size = 2 * num_node_features + num_edge_features
dict_activations = {'relu': nn.ReLU(),
'elu': nn.ELU(),
'tanh': nn.Tanh()}
self.activation = dict_activations[activation]
self.edge_mlp = nn.Sequential(
nn.Linear(self.input_size, int(self.input_size / 2)),
self.activation,
nn.Linear(int(self.input_size / 2), num_edge_features),
)
def forward(self, src, dest, edge_attr, u=None, batch=None):
# source, target: [E, F_x], where E is the number of edges.
# edge_attr: [E, F_e]
# u: [B, F_u], where B is the number of graphs.
# batch: [E] with max entry B - 1.
out = torch.cat([src, dest, edge_attr], 1)
out = self.edge_mlp(out)
return out
class NodeModel(torch.nn.Module):
def __init__(self, num_node_features, num_edge_features, activation='relu'):
super(NodeModel, self).__init__()
self.input_size = num_node_features + num_edge_features
dict_activations = {'relu': nn.ReLU(),
'elu': nn.ELU(),
'tanh': nn.Tanh()}
self.activation = dict_activations[activation]
self.node_mlp_1 = nn.Sequential(
nn.Linear(self.input_size, self.input_size * 2),
self.activation,
nn.Linear(self.input_size * 2, self.input_size * 2),
)
self.node_mlp_2 = nn.Sequential(
nn.Linear(num_node_features + self.input_size * 2, self.input_size),
self.activation,
nn.Linear(self.input_size, num_node_features),
)
def forward(self, x, edge_index, edge_attr, u=None, batch=None):
# x: [N, F_x], where N is the number of nodes.
# edge_index: [2, E] with max entry N - 1.
# edge_attr: [E, F_e]
# u: [B, F_u]
# batch: [N] with max entry B - 1.
row, col = edge_index
out = torch.cat([x[row], edge_attr], dim=1)
out = self.node_mlp_1(out)
# Scatter around "col" (destination nodes)
out = scatter_mean(out, col, dim=0, dim_size=x.size(0))
# Concatenate X with transformed representation given the source nodes with edge's messages
out = torch.cat([x, out], dim=1)
return self.node_mlp_2(out)
class PNANodeModel(torch.nn.Module):
def __init__(self, num_node_features, num_edge_features, activation, run_cfg):
super(PNANodeModel, self).__init__()
if run_cfg['nodemodel_aggr'] == 'all':
aggregators = ['mean', 'min', 'max', 'std', 'sum']
else:
aggregators = [run_cfg['nodemodel_aggr']]
if run_cfg['nodemodel_scalers'] == 'all':
scalers = ['identity', 'amplification', 'attenuation']
else:
scalers = ['identity']
print(f'--> PNANodeModel going with aggregators={aggregators}, scalers={scalers}')
self.activation = activation
self.convs = ModuleList()
self.batch_norms = ModuleList()
for _ in range(run_cfg['nodemodel_layers']):
conv = PNAConv(in_channels=num_node_features, out_channels=num_node_features,
aggregators=aggregators, scalers=scalers, deg=run_cfg['dataset_indegree'],
edge_dim=num_edge_features, towers=1, pre_layers=1, post_layers=1,
divide_input=False)
self.convs.append(conv)
self.batch_norms.append(BatchNorm(num_node_features))
def forward(self, x, edge_index, edge_attr, u=None, batch=None):
for conv, batch_norm in zip(self.convs, self.batch_norms):
x = self.activation(batch_norm(conv(x, edge_index, edge_attr)))
return x
class SpatioTemporalModel(nn.Module):
def __init__(self, run_cfg: Dict[str, Any],
multimodal_size: int = 0, model_version: str = '80',
encoding_model=None):
super(SpatioTemporalModel, self).__init__()
num_time_length = run_cfg['time_length']
dropout_perc = run_cfg['param_dropout']
pooling = run_cfg['param_pooling']
channels_conv = run_cfg['param_channels_conv']
activation = run_cfg['param_activation']
conv_strategy = run_cfg['param_conv_strategy']
sweep_type = run_cfg['sweep_type']
gat_heads = run_cfg['param_gat_heads']
edge_weights = run_cfg['edge_weights']
final_sigmoid = run_cfg['model_with_sigmoid']
num_nodes = run_cfg['num_nodes']
num_gnn_layers = run_cfg['param_num_gnn_layers']
encoding_strategy = run_cfg['param_encoding_strategy']
multimodal_size = run_cfg['multimodal_size']
temporal_embed_size = run_cfg['temporal_embed_size']
self.VERSION = model_version
#if pooling not in [PoolingStrategy.MEAN, PoolingStrategy.DIFFPOOL, PoolingStrategy.CONCAT]:
# print('THIS IS NOT PREPARED FOR OTHER POOLING THAN MEAN/DIFFPOOL/CONCAT')
# exit(-1)
if conv_strategy not in [ConvStrategy.TCN_ENTIRE, ConvStrategy.CNN_ENTIRE, ConvStrategy.NONE, ConvStrategy.LSTM]:
print('THIS IS NOT PREPARED FOR THAT CONV STRATEGY')
exit(-1)
if activation not in ['relu', 'tanh', 'elu']:
print('THIS IS NOT PREPARED FOR OTHER ACTIVATION THAN relu/tanh/elu')
exit(-1)
if sweep_type == SweepType.GAT:
print('GAT is not ready for edge_attr')
exit(-1)
if conv_strategy != ConvStrategy.NONE and encoding_strategy not in [EncodingStrategy.NONE,
EncodingStrategy.STATS]:
print('Mismatch on conv_strategy/encoding_strategy')
exit(-1)
self.multimodal_size: int = multimodal_size
self.TEMPORAL_EMBED_SIZE: int = temporal_embed_size
self.NODE_EMBED_SIZE: int = self.TEMPORAL_EMBED_SIZE + self.multimodal_size
if self.multimodal_size > 0:
self.multimodal_lin = nn.Linear(self.multimodal_size, self.multimodal_size)
self.multimodal_batch = BatchNorm1d(self.multimodal_size)
self.conv_strategy = conv_strategy
self.encoding_strategy = encoding_strategy
self.encoder_model = encoding_model
if encoding_model is not None:
self.NODE_EMBED_SIZE = self.encoding_model.EMBED_SIZE
elif self.conv_strategy == ConvStrategy.NONE:
self.NODE_EMBED_SIZE = num_time_length
if self.encoding_strategy == EncodingStrategy.STATS:
self.stats_lin = nn.Linear(self.TEMPORAL_EMBED_SIZE, self.TEMPORAL_EMBED_SIZE)
self.stats_batch = BatchNorm1d(self.TEMPORAL_EMBED_SIZE)
self.dropout: float = dropout_perc
self.pooling = pooling
dict_activations = {'relu': nn.ReLU(),
'elu': nn.ELU(),
'tanh': nn.Tanh()}
self.activation = dict_activations[activation]
self.activation_str = activation
self.num_nodes = num_nodes
self.channels_conv = channels_conv
self.final_sigmoid = final_sigmoid
self.sweep_type = sweep_type
self.num_time_length = num_time_length
self.final_feature_size = ceil(self.num_time_length / 2 / 8)
self.edge_weights = edge_weights
self.num_gnn_layers = num_gnn_layers
self.gat_heads = gat_heads
if self.sweep_type == SweepType.GCN:
self.gnn_conv1 = GCNConv(self.NODE_EMBED_SIZE,
self.NODE_EMBED_SIZE)
if self.num_gnn_layers == 2:
self.gnn_conv2 = GCNConv(self.NODE_EMBED_SIZE,
self.NODE_EMBED_SIZE)
elif self.sweep_type == SweepType.GAT:
self.gnn_conv1 = GATConv(self.NODE_EMBED_SIZE,
self.NODE_EMBED_SIZE,
heads=self.gat_heads,
concat=False,
dropout=dropout_perc)
if self.num_gnn_layers == 2:
self.gnn_conv2 = GATConv(self.NODE_EMBED_SIZE,
self.NODE_EMBED_SIZE,
heads=self.gat_heads if self.gat_heads == 1 else int(self.gat_heads / 2),
concat=False,
dropout=dropout_perc)
elif self.sweep_type == SweepType.META_EDGE_NODE:
self.meta_layer = MetaLayer(edge_model=EdgeModel(num_node_features=self.NODE_EMBED_SIZE,
num_edge_features=1,
activation=activation),
node_model=PNANodeModel(num_node_features=self.NODE_EMBED_SIZE, num_edge_features=1,
activation=self.activation, run_cfg=run_cfg))
elif self.sweep_type == SweepType.META_NODE:
#self.meta_layer = MetaLayer(node_model=NodeModel(num_node_features=self.NODE_EMBED_SIZE,
# num_edge_features=1,
# activation=activation))
self.meta_layer = PNANodeModel(num_node_features=self.NODE_EMBED_SIZE, num_edge_features=1,
activation=self.activation, run_cfg=run_cfg)
if self.conv_strategy == ConvStrategy.TCN_ENTIRE:
#self.size_before_lin_temporal = self.channels_conv * 8 * self.final_feature_size
#self.lin_temporal = nn.Linear(self.size_before_lin_temporal, self.NODE_EMBED_SIZE - self.multimodal_size)
if run_cfg['tcn_hidden_units'] == 8:
self.size_before_lin_temporal = self.channels_conv * (2 ** (run_cfg['tcn_depth'] - 1)) * self.num_time_length
else:
self.size_before_lin_temporal = run_cfg['tcn_hidden_units'] * self.num_time_length
self.lin_temporal = self._get_lin_temporal(run_cfg)
tcn_layers = []
for i in range(run_cfg['tcn_depth']):
if run_cfg['tcn_hidden_units'] == 8:
tcn_layers.append(self.channels_conv * (2 ** i) )
else:
tcn_layers.append(run_cfg['tcn_hidden_units'])
self.temporal_conv = TemporalConvNet(1,
tcn_layers,
kernel_size=run_cfg['tcn_kernel'],
dropout=self.dropout,
norm_strategy=run_cfg['tcn_norm_strategy'])
elif self.conv_strategy == ConvStrategy.LSTM:
self.temporal_conv = nn.LSTM(input_size=1,
hidden_size=run_cfg['tcn_hidden_units'],
num_layers=run_cfg['tcn_depth'],
dropout=dropout_perc,
batch_first=True)
self.size_before_lin_temporal = run_cfg['tcn_hidden_units'] * self.num_time_length
self.lin_temporal = self._get_lin_temporal(run_cfg)
def init_lstm_hidden(x):
h0 = torch.zeros(run_cfg['tcn_depth'], x.size(0), run_cfg['tcn_hidden_units'])
c0 = torch.zeros(run_cfg['tcn_depth'], x.size(0), run_cfg['tcn_hidden_units'])
return [t.to(x.device) for t in (h0, c0)]
self.init_lstm_hidden = init_lstm_hidden
elif self.conv_strategy == ConvStrategy.CNN_ENTIRE:
stride = 2
padding = 3
self.size_before_lin_temporal = self.channels_conv * 8 * self.final_feature_size
self.lin_temporal = nn.Linear(self.size_before_lin_temporal, self.NODE_EMBED_SIZE - self.multimodal_size)
self.conv1d_1 = nn.Conv1d(1, self.channels_conv, 7, padding=padding, stride=stride)
self.conv1d_2 = nn.Conv1d(self.channels_conv, self.channels_conv * 2, 7, padding=padding, stride=stride)
self.conv1d_3 = nn.Conv1d(self.channels_conv * 2, self.channels_conv * 4, 7, padding=padding, stride=stride)
self.conv1d_4 = nn.Conv1d(self.channels_conv * 4, self.channels_conv * 8, 7, padding=padding, stride=stride)
self.batch1 = BatchNorm1d(self.channels_conv)
self.batch2 = BatchNorm1d(self.channels_conv * 2)
self.batch3 = BatchNorm1d(self.channels_conv * 4)
self.batch4 = BatchNorm1d(self.channels_conv * 8)
self.temporal_conv = nn.Sequential(self.conv1d_1, self.activation, self.batch1, nn.Dropout(dropout_perc),
self.conv1d_2, self.activation, self.batch2, nn.Dropout(dropout_perc),
self.conv1d_3, self.activation, self.batch3, nn.Dropout(dropout_perc),
self.conv1d_4, self.activation, self.batch4, nn.Dropout(dropout_perc))
self.init_weights()
if self.pooling == PoolingStrategy.DIFFPOOL:
self.pre_final_linear = nn.Linear(3 * self.NODE_EMBED_SIZE, self.NODE_EMBED_SIZE)
self.diff_pool = DiffPoolLayer(num_nodes, self.NODE_EMBED_SIZE, aggr='mean', run_cfg=run_cfg)
elif self.pooling == PoolingStrategy.CONCAT:
self.pre_final_linear = nn.Linear(self.num_nodes * self.NODE_EMBED_SIZE, self.NODE_EMBED_SIZE)
elif self.pooling in [PoolingStrategy.DP_MAX, PoolingStrategy.DP_ADD, PoolingStrategy.DP_MEAN, PoolingStrategy.DP_IMPROVED]:
self.pre_final_linear = nn.Linear(3 * self.NODE_EMBED_SIZE, self.NODE_EMBED_SIZE)
print(f'Special DiffPool: {self.pooling}.')
if self.pooling == PoolingStrategy.DP_MAX:
self.diff_pool = DiffPoolLayer(num_nodes, self.NODE_EMBED_SIZE, aggr='max', run_cfg=run_cfg)
elif self.pooling == PoolingStrategy.DP_ADD:
self.diff_pool = DiffPoolLayer(num_nodes, self.NODE_EMBED_SIZE, aggr='add', run_cfg=run_cfg)
elif self.pooling == PoolingStrategy.DP_MEAN:
self.diff_pool = DiffPoolLayer(num_nodes, self.NODE_EMBED_SIZE, aggr='mean', run_cfg=run_cfg)
elif self.pooling == PoolingStrategy.DP_IMPROVED:
self.diff_pool = DiffPoolLayer(num_nodes, self.NODE_EMBED_SIZE, aggr='improved', run_cfg=run_cfg)
if run_cfg['final_mlp_layers'] == 1:
self.final_linear = nn.Linear(self.NODE_EMBED_SIZE, 1)
elif run_cfg['final_mlp_layers'] == 2:
self.final_linear = nn.Sequential(
nn.Linear(self.NODE_EMBED_SIZE, int(self.NODE_EMBED_SIZE / 2)),
self.activation, nn.Dropout(dropout_perc),
nn.Linear(int(self.NODE_EMBED_SIZE / 2), 1))
def _get_lin_temporal(self, run_cfg):
if run_cfg['tcn_final_transform_layers'] == 1:
lin_temporal = nn.Linear(self.size_before_lin_temporal,
self.NODE_EMBED_SIZE - self.multimodal_size)
elif run_cfg['tcn_final_transform_layers'] == 2:
lin_temporal = nn.Sequential(
nn.Linear(self.size_before_lin_temporal, int(self.size_before_lin_temporal / 2)),
self.activation, nn.Dropout(self.dropout),
nn.Linear(int(self.size_before_lin_temporal / 2), self.NODE_EMBED_SIZE - self.multimodal_size))
elif run_cfg['tcn_final_transform_layers'] == 3:
lin_temporal = nn.Sequential(
nn.Linear(self.size_before_lin_temporal, int(self.size_before_lin_temporal / 2)),
self.activation, nn.Dropout(self.dropout),
nn.Linear(int(self.size_before_lin_temporal / 2), int(self.size_before_lin_temporal / 3)),
self.activation, nn.Dropout(self.dropout),
nn.Linear(int(self.size_before_lin_temporal / 3), self.NODE_EMBED_SIZE - self.multimodal_size))
return lin_temporal
def init_weights(self):
self.conv1d_1.weight.data.normal_(0, 0.01)
self.conv1d_2.weight.data.normal_(0, 0.01)
self.conv1d_3.weight.data.normal_(0, 0.01)
self.conv1d_4.weight.data.normal_(0, 0.01)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
if self.multimodal_size > 0:
xn, x = x[:, :self.multimodal_size], x[:, self.multimodal_size:]
xn = self.multimodal_lin(xn)
xn = self.activation(xn)
xn = self.multimodal_batch(xn)
xn = F.dropout(xn, p=self.dropout, training=self.training)
# Processing temporal part
if self.conv_strategy != ConvStrategy.NONE:
if self.conv_strategy == ConvStrategy.LSTM:
x = x.view(-1, self.num_time_length, 1)
h0, c0 = self.init_lstm_hidden(x)
x, (_, _) = self.temporal_conv(x, (h0, c0))
x = x.contiguous()
else:
x = x.view(-1, 1, self.num_time_length)
x = self.temporal_conv(x)
# Concatenating for the final embedding per node
x = x.view(x.size()[0], self.size_before_lin_temporal)
x = self.lin_temporal(x)
x = self.activation(x)
x = F.dropout(x, p=self.dropout, training=self.training)
elif self.encoding_strategy == EncodingStrategy.STATS:
x = self.stats_lin(x)
x = self.activation(x)
x = self.stats_batch(x)
x = F.dropout(x, p=self.dropout, training=self.training)
elif self.encoding_strategy == EncodingStrategy.VAE3layers:
mu, logvar = self.encoder_model.encode(x)
x = self.encoder_model.reparameterize(mu, logvar)
elif self.encoding_strategy == EncodingStrategy.AE3layers:
x = self.encoder_model.encode(x)
if self.multimodal_size > 0:
x = torch.cat((xn, x), dim=1)
if self.sweep_type in [SweepType.GAT, SweepType.GCN]:
if self.edge_weights:
x = self.gnn_conv1(x, edge_index, edge_weight=edge_attr.view(-1))
else:
x = self.gnn_conv1(x, edge_index)
x = self.activation(x)
x = F.dropout(x, training=self.training)
if self.num_gnn_layers == 2:
if self.edge_weights:
x = self.gnn_conv2(x, edge_index, edge_weight=edge_attr.view(-1))
else:
x = self.gnn_conv2(x, edge_index)
x = self.activation(x)
x = F.dropout(x, training=self.training)
elif self.sweep_type == SweepType.META_NODE:
x = self.meta_layer(x, edge_index, edge_attr)
elif self.sweep_type == SweepType.META_EDGE_NODE:
x, edge_attr, _ = self.meta_layer(x, edge_index, edge_attr)
if self.pooling == PoolingStrategy.MEAN:
x = global_mean_pool(x, data.batch)
elif self.pooling == PoolingStrategy.ADD:
x = global_add_pool(x, data.batch)
elif self.pooling in [PoolingStrategy.DIFFPOOL, PoolingStrategy.DP_MAX, PoolingStrategy.DP_ADD, PoolingStrategy.DP_MEAN, PoolingStrategy.DP_IMPROVED]:
adj_tmp = pyg_utils.to_dense_adj(edge_index, data.batch, edge_attr=edge_attr)
if edge_attr is not None: # Because edge_attr only has 1 feature per edge
adj_tmp = adj_tmp[:, :, :, 0]
x_tmp, batch_mask = pyg_utils.to_dense_batch(x, data.batch)
x, link_loss, ent_loss = self.diff_pool(x_tmp, adj_tmp, batch_mask)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.activation(self.pre_final_linear(x))
elif self.pooling == PoolingStrategy.CONCAT:
x, _ = to_dense_batch(x, data.batch)
x = x.view(-1, self.NODE_EMBED_SIZE * self.num_nodes)
x = self.activation(self.pre_final_linear(x))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.final_linear(x)
if self.final_sigmoid:
return torch.sigmoid(x) if self.pooling not in [PoolingStrategy.DIFFPOOL, PoolingStrategy.DP_MAX, PoolingStrategy.DP_ADD, PoolingStrategy.DP_MEAN, PoolingStrategy.DP_IMPROVED] else (
torch.sigmoid(x), link_loss, ent_loss)
else:
return x if self.pooling not in [PoolingStrategy.DIFFPOOL, PoolingStrategy.DP_MAX, PoolingStrategy.DP_ADD, PoolingStrategy.DP_MEAN, PoolingStrategy.DP_IMPROVED] else (x, link_loss, ent_loss)
def to_string_name(self):
model_vars = ['V_' + self.VERSION,
'TL_' + str(self.num_time_length),
'D_' + str(self.dropout),
'A_' + self.activation_str,
'P_' + self.pooling.value[:3],
'CS_' + self.conv_strategy.value[:3],
'CH_' + str(self.channels_conv),
'FS_' + str(self.final_sigmoid)[:1],
'T_' + self.sweep_type.value[:3],
'W_' + str(self.edge_weights)[:1],
'GH_' + str(self.gat_heads),
'GL_' + str(self.num_gnn_layers),
'E_' + self.encoding_strategy.value[:3],
'M_' + str(self.multimodal_size),
'S_' + str(self.TEMPORAL_EMBED_SIZE)
]
return ''.join(model_vars)