-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
460 lines (384 loc) · 17.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import random
from collections import Counter, defaultdict
from copy import deepcopy
from enum import Enum, unique
from typing import NoReturn, Dict, Any
#import fcntl
import numpy as np
import torch
import wandb
from sklearn.preprocessing import LabelEncoder
from torch_geometric.utils import degree
from xgboost import XGBModel
@unique
# 3 first letters need to be different (for logging)
class SweepType(str, Enum):
DIFFPOOL = 'diff_pool'
NO_GNN = 'no_gnn'
GCN = 'gcn'
GAT = 'gat'
META_NODE = 'node_meta'
META_EDGE_NODE = 'edge_node_meta'
FLATTEN_CORRS = 'flatten_corrs'
@unique
# 3 first letters need to be different (for logging)
class Normalisation(str, Enum):
NONE = 'no_norm'
ROI = 'roi_norm'
SUBJECT = 'subject_norm'
@unique
class DatasetType(str, Enum):
HCP = 'hcp'
UKB = 'ukb'
@unique
class ConnType(str, Enum):
FMRI = 'fmri'
STRUCT = 'struct'
@unique
# 3 first letters need to be different (for logging)
class ConvStrategy(str, Enum):
CNN_ENTIRE = 'entire'
TCN_ENTIRE = 'tcn_entire'
LSTM = 'lstm'
NONE = 'none'
@unique
# 3 first letters need to be different (for logging)
class PoolingStrategy(str, Enum):
MEAN = 'mean'
ADD = 'add'
DIFFPOOL = 'diff_pool'
CONCAT = 'concat'
# The following 3 used temporarily for hyperparameter search
DP_ADD = 'dpadd'
DP_MEAN = 'dpmean'
DP_MAX = 'dpmax'
DP_IMPROVED = 'dpimproved'
@unique
class AnalysisType(str, Enum):
"""
ST_* represent the type of data in each node
FLATTEN_* represents the xgboost baseline
"""
ST_UNIMODAL = 'st_unimodal'
ST_UNIMODAL_AVG = 'st_unimodal_avg'
ST_MULTIMODAL = 'st_multimodal'
ST_MULTIMODAL_AVG = 'st_multimodal_avg'
FLATTEN_CORRS = 'flatten_corrs'
FLATTEN_CORRS_THRESHOLD = 'flatten_corrs_threshold'
@unique
# 3 first letters need to be different (for logging)
class EncodingStrategy(str, Enum):
NONE = 'none'
AE3layers = '3layerAE'
VAE3layers = '3layerVAE'
STATS = 'stats'
@unique
class LRScheduler(str, Enum):
NONE = 'none'
STEP = 'step'
PLATEAU = 'plateau'
COS_ANNEALING = 'cosine_annealing'
@unique
class Optimiser(str, Enum):
SGD = 'sgd'
ADAM = 'adam'
ADAMW = 'adamw'
RMSPROP = 'rmsprop'
# Adapted from https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, model_saving_name, patience=33, delta=0, trace_func=print):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 33
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
trace_func (function): trace print function.
Default: print
"""
self.epochs_run = 0
self.patience = patience
self.counter = 0
self.best_score = None
self.early_stop = False
self.delta = delta
self.model_saving_name = model_saving_name
self.trace_func = trace_func
self.best_model_metrics = {'loss': np.Inf}
def __call__(self, val_metrics, model, label_scaler=None):
self.epochs_run += 1
val_loss = val_metrics['loss']
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_model_and_metrics(val_metrics, model, label_scaler)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_model_and_metrics(val_metrics, model, label_scaler)
self.counter = 0
def save_model_and_metrics(self, val_metrics, model, label_scaler):
'''Saves model and metrics when validation loss decrease.'''
torch.save(model.state_dict(), os.path.join(wandb.run.dir, self.model_saving_name))
self.best_model_metrics['loss'] = val_metrics['loss']
self.best_model_metrics['best_epoch'] = self.epochs_run
if label_scaler is None:
self.best_model_metrics['sensitivity'] = val_metrics['sensitivity']
self.best_model_metrics['specificity'] = val_metrics['specificity']
self.best_model_metrics['acc'] = val_metrics['acc']
self.best_model_metrics['f1'] = val_metrics['f1']
self.best_model_metrics['auc'] = val_metrics['auc']
else:
self.best_model_metrics['r2'] = val_metrics['r2']
self.best_model_metrics['r'] = val_metrics['r']
if 'ent_loss' in val_metrics:
self.best_model_metrics['ent_loss'] = val_metrics['ent_loss']
self.best_model_metrics['link_loss'] = val_metrics['link_loss']
###
# Adapted from: https://github.com/rwightman/pytorch-image-models/blob/master/timm/utils/model_ema.py
class ModelEmaV2(torch.nn.Module):
""" Model Exponential Moving Average V2
Keep a moving average of everything in the model state_dict (parameters and buffers).
V2 of this module is simpler, it does not match params/buffers based on name but simply
iterates in order. It works with torchscript (JIT of full model).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use
RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA
smoothing of weights to match results. Pay attention to the decay constant you are using
relative to your update count per epoch.
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
disable validation of the EMA weights. Validation will have to be done manually in a separate
process, or after the training stops converging.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, new_model, decay=0.9999, device=None):
super(ModelEmaV2, self).__init__()
# make a copy of the model for accumulating moving average of weights
#self.module = deepcopy(model)
#################################################
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
## Issues with deepcopy() when using weightnorm, therefore, new_model is assumed to be a
## new model already
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
self.module = new_model
self.module.eval()
self.decay = decay
self.device = device # perform ema on different device from model if set
if self.device is not None:
self.module.to(device=device)
def _update(self, model, update_fn):
with torch.no_grad():
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()):
if self.device is not None:
model_v = model_v.to(device=self.device)
ema_v.copy_(update_fn(ema_v, model_v))
def update(self, model):
self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
def calculate_indegree_histogram(tmp_dataset):
max_deg_size = 0
for data in tmp_dataset:
d = degree(data.edge_index[1], num_nodes=data.num_nodes, dtype=torch.long)
max_deg_size = max(torch.bincount(d).numel(), max_deg_size)
deg = torch.zeros(max_deg_size, dtype=torch.long)
for data in tmp_dataset:
d = degree(data.edge_index[1], num_nodes=data.num_nodes, dtype=torch.long)
deg += torch.bincount(d, minlength=deg.numel())
return deg
def get_freer_gpu() -> int:
"""
Considers that there is only GPU 0 and 1.
:return:
"""
# This option is not preventing when GPUs not being used yet
# os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp_gpu')
# memory_available = [int(x.split()[2]) for x in open('tmp_gpu', 'r').readlines()]
# return np.argmax(memory_available)
print('Overriding GPU info and getting GPU 0...')
return 0
# print('Getting free GPU info...')
# gpu_to_use: int = 0
# with open('tmp_gpu.txt', 'r+') as fd:
# fcntl.flock(fd, fcntl.LOCK_EX)
# # Someone is using GPU 0 already
# info_file = fd.read()
# if info_file == 'server':
# print('Server usage, just give 0')
# elif info_file == '0':
# print('GPU 0 already in use')
# gpu_to_use = 1
# else:
# print('Reserving GPU 0')
# # Inform gpu 0 is now reserved
# fd.seek(0)
# fd.write('0')
# fd.truncate()
# fcntl.flock(fd, fcntl.LOCK_UN)
return gpu_to_use
def free_gpu_info() -> NoReturn:
print('Freeing GPU 0!')
#with open('tmp_gpu.txt', 'r+') as fd:
# fcntl.flock(fd, fcntl.LOCK_EX)
# info_file = fd.read()
# if info_file == 'server':
# print('Server usage, no need to free GPU')
# else:
# fd.seek(0)
# fd.write('')
# fd.truncate()
# fcntl.flock(fd, fcntl.LOCK_UN)
def merge_y_and_others(ys, indices):
tmp = torch.cat([ys.long().view(-1, 1),
indices.view(-1, 1)], dim=1)
return LabelEncoder().fit_transform([str(l) for l in tmp.numpy()])
def create_name_for_flattencorrs_dataset(run_cfg: Dict[str, Any]) -> str:
prefix_location = './pytorch_data/unbalanced_'
name_combination = '_'.join([run_cfg['dataset_type'].value,
run_cfg['analysis_type'].value,
run_cfg['param_conn_type'].value,
str(run_cfg['num_nodes']),
str(run_cfg['time_length'])
])
return prefix_location + name_combination
def create_name_for_brain_dataset(num_nodes: int, time_length: int, target_var: str, threshold: int,
connectivity_type: ConnType, normalisation: Normalisation,
analysis_type: AnalysisType, dataset_type: DatasetType,
encoding_strategy: EncodingStrategy, edge_weights: bool = False) -> str:
if edge_weights:
prefix_location = './pytorch_data/unbalanced_weights_'
else:
prefix_location = './pytorch_data/unbalanced_'
name_combination = '_'.join(
[target_var, dataset_type.value, analysis_type.value, encoding_strategy.value, connectivity_type.value,
str(num_nodes), str(time_length), str(threshold), normalisation.value])
return prefix_location + name_combination
def create_best_encoder_name(ts_length, outer_split_num, encoder_name,
prefix_location='logs/',
suffix='.pth'):
return f'{prefix_location}{encoder_name}_{ts_length}_{outer_split_num}_best{suffix}'
def create_name_for_encoder_model(ts_length, outer_split_num, encoder_name,
params,
prefix_location='logs/',
suffix='.pth'):
return prefix_location + '_'.join([encoder_name,
str(ts_length),
str(outer_split_num),
str(params['weight_decay']),
str(params['lr'])
]) + suffix
def create_name_for_xgbmodel(run_cfg: Dict[str, Any], outer_split_num: int, model: XGBModel, inner_split_num: int,
prefix_location='logs/', suffix='.pkl') -> str:
if run_cfg['analysis_type'] == AnalysisType.FLATTEN_CORRS:
model_str_representation = run_cfg['analysis_type'].value
for key in ['colsample_bylevel', 'colsample_bynode', 'colsample_bytree', 'gamma', 'learning_rate', 'max_depth',
'min_child_weight', 'n_estimators', 'subsample']:
model_str_representation += key[-3:] + '_' + str(model.get_params()[key])
return prefix_location + '_'.join([run_cfg['target_var'],
run_cfg['dataset_type'].value,
str(outer_split_num),
str(inner_split_num),
model_str_representation,
str(run_cfg['num_nodes']),
run_cfg['param_conn_type'].value
]) + suffix
def create_name_for_model(run_cfg: Dict[str, Any], model, outer_split_num: int, inner_split_num: int,
prefix_location='logs/', suffix='.pt') -> str:
if run_cfg['analysis_type'] in [AnalysisType.ST_MULTIMODAL, AnalysisType.ST_UNIMODAL, AnalysisType.ST_UNIMODAL_AVG, AnalysisType.ST_MULTIMODAL_AVG]:
model_str_representation = model.to_string_name()
lr = round(run_cfg['param_lr'], 7)
weight_decay = round(run_cfg['param_weight_decay'], 7)
return prefix_location + '_'.join([run_cfg['target_var'],
run_cfg['dataset_type'].value,
str(outer_split_num),
str(inner_split_num),
model_str_representation,
str(lr),
str(weight_decay),
str(run_cfg['param_threshold']),
run_cfg['param_normalisation'].value[:3],
str(run_cfg['num_nodes']),
run_cfg['param_conn_type'].value
]) + suffix
def change_w_config_(w_config):
'''
Change w_config from wandb API to the one needed to the general functions in this project
:param w_config:
:return:
'''
w_config['analysis_type'] = AnalysisType(w_config['analysis_type'])
w_config['dataset_type'] = DatasetType(w_config['dataset_type'])
w_config['param_conn_type'] = ConnType(w_config['conn_type'])
w_config['split_to_test'] = w_config['fold_num']
w_config['model_with_sigmoid'] = True
w_config['param_activation'] = w_config['activation']
w_config['param_channels_conv'] = w_config['channels_conv']
w_config['param_conv_strategy'] = ConvStrategy(w_config['conv_strategy'])
w_config['param_dropout'] = w_config['dropout']
w_config['param_encoding_strategy'] = EncodingStrategy(w_config['encoding_strategy'])
w_config['param_lr'] = w_config['lr']
w_config['param_normalisation'] = Normalisation(w_config['normalisation'])
w_config['param_num_gnn_layers'] = w_config['num_gnn_layers']
w_config['param_pooling'] = PoolingStrategy(w_config['pooling'])
w_config['param_threshold'] = w_config['threshold']
w_config['param_weight_decay'] = w_config['weight_decay']
w_config['sweep_type'] = SweepType(w_config['sweep_type'])
w_config['ts_spit_num'] = int(4800 / w_config['time_length'])
w_config['param_gat_heads'] = 0
if w_config['sweep_type'] == SweepType.GAT:
w_config['param_gat_heads'] = w_config.gat_heads
w_config['lr_scheduler'] = LRScheduler(w_config['lr_scheduler'])
w_config['optimiser'] = Optimiser(w_config['optimiser'])
w_config['multimodal_size'] = 0
if w_config['target_var'] in ['age', 'bmi']:
w_config['model_with_sigmoid'] = False
# From https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation
class StratifiedGroupKFold:
def __init__(self, n_splits=5, random_state=0):
self.n_splits = n_splits
self.random_state = random_state
def split(self, X, y, groups):
labels_num = np.max(y) + 1
y_counts_per_group = defaultdict(lambda: np.zeros(labels_num))
y_distr = Counter()
for label, g in zip(y, groups):
y_counts_per_group[g][label] += 1
y_distr[label] += 1
y_counts_per_fold = defaultdict(lambda: np.zeros(labels_num))
groups_per_fold = defaultdict(set)
def eval_y_counts_per_fold(y_counts, fold):
y_counts_per_fold[fold] += y_counts
std_per_label = []
for label in range(labels_num):
label_std = np.std([y_counts_per_fold[i][label] / y_distr[label] for i in range(self.n_splits)])
std_per_label.append(label_std)
y_counts_per_fold[fold] -= y_counts
return np.mean(std_per_label)
groups_and_y_counts = list(y_counts_per_group.items())
random.Random(self.random_state).shuffle(groups_and_y_counts)
for g, y_counts in sorted(groups_and_y_counts, key=lambda x: -np.std(x[1])):
best_fold = None
min_eval = None
for i in range(self.n_splits):
fold_eval = eval_y_counts_per_fold(y_counts, i)
if min_eval is None or fold_eval < min_eval:
min_eval = fold_eval
best_fold = i
y_counts_per_fold[best_fold] += y_counts
groups_per_fold[best_fold].add(g)
all_groups = set(groups)
for i in range(self.n_splits):
train_groups = all_groups - groups_per_fold[i]
test_groups = groups_per_fold[i]
train_indices = [i for i, g in enumerate(groups) if g in train_groups]
test_indices = [i for i, g in enumerate(groups) if g in test_groups]
yield train_indices, test_indices