forked from samtools/bcftools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvcfcnv.c
859 lines (776 loc) · 34.1 KB
/
vcfcnv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/* The MIT License
Copyright (c) 2014 Genome Research Ltd.
Author: Petr Danecek <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <unistd.h>
#include <getopt.h>
#include <math.h>
#include <htslib/vcf.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/kstring.h>
#include <htslib/kfunc.h>
#include <htslib/khash_str2int.h>
#include "bcftools.h"
#include "HMM.h"
#define DBG_HMM_PRN 0
#define N_STATES 5
#define CN0 0
#define CN1 1
#define CN2 2
#define CN3 3
#define CNx 4
typedef struct
{
char *name;
int idx;
double pobs[N_STATES];
FILE *dat_fh, *cn_fh, *summary_fh;
char *dat_fname, *cn_fname, *summary_fname;
}
sample_t;
typedef struct _args_t
{
bcf_srs_t *files;
bcf_hdr_t *hdr;
int prev_rid, ntot, nused;
sample_t query_sample, control_sample;
int nstates; // number of states: N_STATES for one sample, N_STATES^2 for two samples
double baf_sigma2, lrr_sigma2; // squared std dev of B-allele frequency and LRR distribution
double tprob_ij, lrr_bias, baf_bias; // transition prob and LRR/BAF weights
double err_prob; // constant probability of erroneous measurement
double pRR, pRA, pAA;
double *tprob, *tprob_arr; // array of transition matrices, precalculated up to ntprob_arr positions
int ntprob_arr;
hmm_t *hmm;
double *eprob; // emission probs [nstates*nsites,msites]
uint32_t *sites; // positions [nsites,msites]
int nsites, msites;
float plot_th;
FILE *summary_fh;
char **argv, *regions_list, *summary_fname, *output_dir;
char *targets_list;
int argc;
}
args_t;
FILE *open_file(char **fname, const char *mode, const char *fmt, ...);
static inline void hmm2cn_state(int nstates, int i, int *a, int *b)
{
*a = i / N_STATES;
*b = i - (*a)*N_STATES;
}
static double *init_tprob_matrix(int ndim, double tij)
{
double tii, *mat = (double*) malloc(sizeof(double)*ndim*ndim);
int i,j;
tii = 1.0 / (1.0 + tij*(ndim-1));
tij *= tii;
if ( ndim==N_STATES ) // one sample
{
for (i=0; i<ndim; i++)
{
double sum = 0;
for (j=0; j<ndim; j++)
{
MAT(mat,ndim,i,j) = i==j ? tii : tij;
sum += MAT(mat,ndim,i,j);
}
assert( fabs(sum - 1.0)<1e-15 );
}
}
else // two samples
{
for (i=0; i<ndim; i++)
{
int ia,ib;
hmm2cn_state(ndim, i, &ia, &ib);
double sum = 0;
for (j=0; j<ndim; j++)
{
int ja,jb;
hmm2cn_state(ndim, j, &ja, &jb);
if ( i==j ) MAT(mat,ndim,i,j) = tii*tii;
else if ( ia==ja && ib!=jb ) MAT(mat,ndim,i,j) = tii*tij;
else if ( ia!=ja && ib==jb ) MAT(mat,ndim,i,j) = tii*tij;
else MAT(mat,ndim,i,j) = tij*tij;
sum += MAT(mat,ndim,i,j);
}
for (j=0; j<ndim; j++) MAT(mat,ndim,i,j) /= sum;
}
}
return mat;
}
static void init_sample_files(sample_t *smpl, char *dir)
{
smpl->dat_fh = open_file(&smpl->dat_fname,"w","%s/dat.%s.tab",dir,smpl->name);
smpl->cn_fh = open_file(&smpl->cn_fname,"w","%s/cn.%s.tab",dir,smpl->name);
smpl->summary_fh = open_file(&smpl->summary_fname,"w","%s/summary.%s.tab",dir,smpl->name);
fprintf(smpl->dat_fh,"# [1]Chromosome\t[2]Position\t[3]BAF\t[4]LRR\n");
fprintf(smpl->cn_fh,"# [1]Chromosome\t[2]Position\t[3]CN\t[4]P(CN0)\t[5]P(CN1)\t[6]P(CN2)\t[7]P(CN3)\t[8]P(CNx)\n");
fprintf(smpl->summary_fh,"# RG, Regions [2]Chromosome\t[3]Start\t[4]End\t[5]Copy Number state\t[6]Quality\n");
}
static void close_sample_files(sample_t *smpl)
{
fclose(smpl->dat_fh);
fclose(smpl->cn_fh);
fclose(smpl->summary_fh);
}
static void init_data(args_t *args)
{
args->prev_rid = -1;
args->hdr = args->files->readers[0].header;
if ( !args->query_sample.name )
{
if ( bcf_hdr_nsamples(args->hdr)>1 ) error("Multi-sample VCF, missing the -s option\n");
args->query_sample.name = args->hdr->samples[0];
}
else
if ( bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->query_sample.name)<0 ) error("The sample \"%s\" not found\n", args->query_sample.name);
if ( !args->files->readers[0].file->is_bin )
{
int ret;
kstring_t tmp = {0,0,0};
if ( args->control_sample.name )
{
ksprintf(&tmp, "%s,%s", args->query_sample.name,args->control_sample.name);
ret = bcf_hdr_set_samples(args->hdr, tmp.s, 0);
}
else
{
ret = bcf_hdr_set_samples(args->hdr, args->query_sample.name, 0);
tmp.s = args->query_sample.name;
}
if ( ret<0 ) error("Error parsing the list of samples: %s\n", tmp.s);
else if ( ret>0 ) error("The sample not found in the VCF: %s\n", ret==1 ? args->query_sample.name : args->control_sample.name);
if ( args->control_sample.name ) free(tmp.s);
}
args->query_sample.idx = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->query_sample.name);
args->control_sample.idx = args->control_sample.name ? bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->control_sample.name) : -1;
args->nstates = args->control_sample.name ? N_STATES*N_STATES : N_STATES;
args->tprob = init_tprob_matrix(args->nstates, args->tprob_ij);
args->hmm = hmm_init(args->nstates, args->tprob, 10000);
args->summary_fh = stdout;
if ( args->output_dir )
{
init_sample_files(&args->query_sample, args->output_dir);
if ( args->control_sample.name )
{
init_sample_files(&args->control_sample, args->output_dir);
args->summary_fh = open_file(&args->summary_fname,"w","%s/summary.tab",args->output_dir);
}
else
args->summary_fh = NULL; // one sample only, no two-file summary
}
int i;
FILE *fh = args->summary_fh ? args->summary_fh : args->query_sample.summary_fh;
fprintf(fh, "# This file was produced by: bcftools cnv(%s+htslib-%s)\n", bcftools_version(),hts_version());
fprintf(fh, "# The command line was:\tbcftools %s", args->argv[0]);
for (i=1; i<args->argc; i++) fprintf(fh, " %s",args->argv[i]);
if ( args->control_sample.name )
fprintf(fh, "\n#\n"
"# RG, Regions\t[2]Chromosome\t[3]Start\t[4]End\t[5]Copy number:%s\t[6]Copy number:%s\t[7]Quality\n",
args->query_sample.name,args->control_sample.name
);
else
fprintf(fh, "\n#\n"
"# RG, Regions\t[2]Chromosome\t[3]Start\t[4]End\t[5]Copy number:%s\t[6]Quality\n",
args->query_sample.name
);
}
char *msprintf(const char *fmt, ...);
static void py_plot_cnv(char *script, float th)
{
if ( th>100 ) return; // create no plots
char *cmd = msprintf("python %s -p %f", script, th);
int ret = system(cmd);
if ( ret) fprintf(stderr, "The command returned non-zero status %d: %s\n", ret, cmd);
free(cmd);
}
static void plot_sample(args_t *args, sample_t *smpl)
{
char *fname;
FILE *fp = open_file(&fname,"w","%s/plot.%s.py",args->output_dir,smpl->name);
fprintf(fp,
"import matplotlib as mpl\n"
"mpl.use('Agg')\n"
"import matplotlib.pyplot as plt\n"
"import csv\n"
"import numpy as np\n"
"csv.register_dialect('tab', delimiter='\\t', quoting=csv.QUOTE_NONE)\n"
"\n"
"dat = {}\n"
"with open('%s', 'rb') as f:\n"
" reader = csv.reader(f, 'tab')\n"
" for row in reader:\n"
" chr = row[0]\n"
" if chr[0]=='#': continue\n"
" if chr not in dat: dat[chr] = []\n"
" dat[chr].append([row[1], float(row[2]), float(row[3])])\n"
"\n"
"cnv = {}\n"
"with open('%s', 'rb') as f:\n"
" reader = csv.reader(f, 'tab')\n"
" for row in reader:\n"
" chr = row[0]\n"
" if chr[0]=='#': continue\n"
" if chr not in cnv: cnv[chr] = []\n"
" row[2] = int(row[2]) + 0.5\n"
" cnv[chr].append(row[1:])\n"
"\n"
"for chr in dat:\n"
" fig,(ax1, ax2, ax3) = plt.subplots(3,1,figsize=(10,8),sharex=True)\n"
" ax1.plot([x[0] for x in dat[chr]],[x[2] for x in dat[chr]], '.', ms=3)\n"
" ax2.plot([x[0] for x in dat[chr]],[x[1] for x in dat[chr]], '.', ms=3)\n"
" cn_dat = cnv[chr]\n"
" xgrid = [float(x[0]) for x in cn_dat]\n"
" ygrid = np.linspace(0,5,6)\n"
" xgrid, ygrid = np.meshgrid(xgrid, ygrid)\n"
" heat = np.zeros_like(xgrid)\n"
" for x in range(len(heat[0])-1):\n"
" heat[0][x] = cn_dat[x][2]\n"
" heat[1][x] = cn_dat[x][3]\n"
" heat[2][x] = cn_dat[x][4]\n"
" heat[3][x] = cn_dat[x][5]\n"
" heat[4][x] = cn_dat[x][6]\n"
" mesh = ax3.pcolormesh(xgrid, ygrid, heat, cmap='bwr_r')\n"
" mesh.set_clim(vmin=-1,vmax=1)\n"
" ax3.plot([x[0] for x in cn_dat],[x[1] for x in cn_dat],'.-',ms=3,color='black')\n"
" fig.suptitle('%s (chr '+chr+')')\n"
" ax1.set_title('Log-R intensities Ratio',fontsize=10)\n"
" ax2.set_title('B-Allele Frequency',fontsize=10)\n"
" ax3.set_title('Copy Number Variation',fontsize=10)\n"
" ax1.set_ylabel('LRR')\n"
" ax2.set_ylabel('BAF')\n"
" ax3.set_ylabel('CN')\n"
" ax3.set_xlabel('Coordinate (chrom '+chr+')',fontsize=10)\n"
" ax3.set_ylim(-0.1,5.1)\n"
" ax3.set_yticks([0.5,1.5,2.5,3.5,4.5])\n"
" ax3.set_yticklabels(['CN0','CN1','CN2','CN3','CN4'])\n"
" plt.subplots_adjust(left=0.08,right=0.95,bottom=0.08,top=0.92)\n"
" plt.savefig('%s/plot.%s.chr'+chr+'.png')\n"
" plt.close()\n"
"\n",
smpl->dat_fname,smpl->cn_fname,smpl->name,args->output_dir,smpl->name
);
fclose(fp);
py_plot_cnv(fname, args->plot_th);
free(fname);
}
static void create_plots(args_t *args)
{
close_sample_files(&args->query_sample);
if ( args->control_sample.name ) close_sample_files(&args->control_sample);
if ( args->summary_fh ) fclose(args->summary_fh);
if ( !args->control_sample.name )
{
plot_sample(args, &args->query_sample);
return;
}
char *fname;
FILE *fp = open_file(&fname,"w","%s/plot.%s.%s.py",args->output_dir,args->control_sample.name,args->query_sample.name);
fprintf(fp,
"import matplotlib as mpl\n"
"mpl.use('Agg')\n"
"import matplotlib.pyplot as plt\n"
"import csv,argparse\n"
"import numpy as np\n"
"csv.register_dialect('tab', delimiter='\\t', quoting=csv.QUOTE_NONE)\n"
"\n"
"control_sample = '%s'\n"
"query_sample = '%s'\n"
"\n"
"parser = argparse.ArgumentParser()\n"
"parser.add_argument('-p', '--plot-threshold', type=float)\n"
"parser.add_argument('-c', '--chromosome')\n"
"args = parser.parse_args()\n"
"if args.plot_threshold==None: args.plot_threshold = 0\n"
"\n"
"def chroms_to_plot(th):\n"
" dat = {}\n"
" with open('%s/summary.tab', 'rb') as f:\n"
" reader = csv.reader(f, 'tab')\n"
" for row in reader:\n"
" if row[0]!='RG': continue\n"
" chr = row[1]\n"
" start = row[2]\n"
" end = row[3]\n"
" qual = float(row[6])\n"
" if row[4]==row[5]: continue\n"
" if chr not in dat: dat[chr] = 0.0\n"
" if qual > dat[chr]: dat[chr] = qual\n"
" out = {}\n"
" for chr in dat:\n"
" if (chr not in dat) or dat[chr]<th: continue\n"
" out[chr] = 1\n"
" return out\n"
"if args.chromosome!=None:\n"
" plot_chroms = { args.chromosome:1 }\n"
"else:\n"
" plot_chroms = chroms_to_plot(args.plot_threshold)\n"
"\n"
"def read_dat(file,dat):\n"
" with open(file, 'rb') as f:\n"
" reader = csv.reader(f, 'tab')\n"
" for row in reader:\n"
" chr = row[0]\n"
" if chr[0]=='#': continue\n"
" if chr not in plot_chroms: continue\n"
" if chr not in dat: dat[chr] = []\n"
" dat[chr].append([row[1], float(row[2]), float(row[3])])\n"
"def read_cnv(file,cnv):\n"
" with open(file, 'rb') as f:\n"
" reader = csv.reader(f, 'tab')\n"
" for row in reader:\n"
" chr = row[0]\n"
" if chr[0]=='#': continue\n"
" if chr not in cnv: cnv[chr] = []\n"
" row[2] = int(row[2]) + 0.5\n"
" cnv[chr].append(row[1:])\n"
"def find_diffs(a,b):\n"
" out = []\n"
" diff = []\n"
" for i in range(len(a)):\n"
" if a[i][1]!=b[i][1]:\n"
" if i>0: diff.append([b[i-1][0],b[i-1][1],a[i-1][1]])\n"
" diff.append([b[i][0],b[i][1],a[i][1]])\n"
" elif len(diff):\n"
" diff.append([b[i][0],b[i][1],a[i][1]])\n"
" out.append(diff)\n"
" diff = []\n"
" if len(diff): out.append(diff)\n"
" return out\n"
"\n"
"control_dat = {}\n"
"control_cnv = {}\n"
"query_dat = {}\n"
"query_cnv = {}\n"
"read_dat('%s',control_dat)\n"
"read_dat('%s',query_dat)\n"
"read_cnv('%s',control_cnv)\n"
"read_cnv('%s',query_cnv)\n"
"\n"
"for chr in query_dat:\n"
" fig,(ax1,ax2,ax3,ax4,ax5,ax6) = plt.subplots(6,1,figsize=(10,8),sharex=True)\n"
" ax1.plot([x[0] for x in control_dat[chr]],[x[2] for x in control_dat[chr]], '.', ms=3,color='red')\n"
" ax2.plot([x[0] for x in control_dat[chr]],[x[1] for x in control_dat[chr]], '.', ms=3,color='red')\n"
" cn_dat = control_cnv[chr]\n"
" xgrid = [float(x[0]) for x in cn_dat]\n"
" ygrid = np.linspace(0,5,6)\n"
" xgrid, ygrid = np.meshgrid(xgrid, ygrid)\n"
" heat = np.zeros_like(xgrid)\n"
" for x in range(len(heat[0])-1):\n"
" heat[0][x] = cn_dat[x][2]\n"
" heat[1][x] = cn_dat[x][3]\n"
" heat[2][x] = cn_dat[x][4]\n"
" heat[3][x] = cn_dat[x][5]\n"
" heat[4][x] = cn_dat[x][6]\n"
" mesh = ax3.pcolormesh(xgrid, ygrid, heat, cmap='bwr')\n"
" mesh.set_clim(vmin=-1,vmax=1)\n"
" ax3.plot([x[0] for x in cn_dat],[x[1] for x in cn_dat],'-',ms=3,color='black',lw=1.7)\n"
"\n"
" ax6.plot([x[0] for x in query_dat[chr]],[x[2] for x in query_dat[chr]], '.', ms=3)\n"
" ax5.plot([x[0] for x in query_dat[chr]],[x[1] for x in query_dat[chr]], '.', ms=3)\n"
" cn_dat = query_cnv[chr]\n"
" xgrid = [float(x[0]) for x in cn_dat]\n"
" ygrid = np.linspace(0,5,6)\n"
" xgrid, ygrid = np.meshgrid(xgrid, ygrid)\n"
" heat = np.zeros_like(xgrid)\n"
" for x in range(len(heat[0])-1):\n"
" heat[0][x] = cn_dat[x][2]\n"
" heat[1][x] = cn_dat[x][3]\n"
" heat[2][x] = cn_dat[x][4]\n"
" heat[3][x] = cn_dat[x][5]\n"
" heat[4][x] = cn_dat[x][6]\n"
" mesh = ax4.pcolormesh(xgrid, ygrid, heat, cmap='bwr_r')\n"
" mesh.set_clim(vmin=-1,vmax=1)\n"
" ax4.plot([x[0] for x in cn_dat],[x[1] for x in cn_dat],'-',ms=3,color='black',lw=1.7)\n"
" ax3.annotate(control_sample, xy=(0.02,0.1), xycoords='axes fraction', color='red',fontsize=12, va='bottom',ha='left')\n"
" ax4.annotate(query_sample, xy=(0.02,0.9), xycoords='axes fraction', color='blue',fontsize=12, va='top',ha='left')\n"
"\n"
" diffs = find_diffs(control_cnv[chr],query_cnv[chr])\n"
" for diff in diffs:\n"
" ax3.plot([x[0] for x in diff],[x[1] for x in diff],'-',ms=3,color='blue',lw=1.7)\n"
" ax4.plot([x[0] for x in diff],[x[2] for x in diff],'-',ms=3,color='red',lw=1.7)\n"
"\n"
" fig.suptitle('chr '+chr+', '+control_sample+' vs '+query_sample)\n"
" ax1.tick_params(axis='both', labelsize=8)\n"
" ax2.tick_params(axis='both', labelsize=8)\n"
" ax3.tick_params(axis='both', labelsize=8)\n"
" ax4.tick_params(axis='both', labelsize=8)\n"
" ax5.tick_params(axis='both', labelsize=8)\n"
" ax6.tick_params(axis='both', labelsize=8)\n"
" ax6.set_xlabel('Coordinate (chrom '+chr+')',fontsize=8)\n"
" ax1.set_ylabel('LRR')\n"
" ax2.set_ylabel('BAF')\n"
" ax3.set_ylabel('CN')\n"
" ax6.set_ylabel('LRR')\n"
" ax5.set_ylabel('BAF')\n"
" ax4.set_ylabel('CN')\n"
" ax3.set_ylim(-0.1,5.1)\n"
" ax3.set_yticks([0.5,1.5,2.5,3.5,4.5])\n"
" ax3.set_yticklabels(['CN0','CN1','CN2','CN3','CN4'])\n"
" ax4.set_ylim(-0.1,5.1)\n"
" ax4.set_yticks([0.5,1.5,2.5,3.5,4.5])\n"
" ax4.set_yticklabels(['CN0','CN1','CN2','CN3','CN4'])\n"
" plt.subplots_adjust(left=0.08,right=0.95,bottom=0.08,top=0.92,hspace=0)\n"
" plt.savefig('%s/plot.%s.%s.chr'+chr+'.png')\n"
" plt.close()\n"
"\n",
args->control_sample.name,args->query_sample.name,
args->output_dir,
args->control_sample.dat_fname,args->query_sample.dat_fname,
args->control_sample.cn_fname,args->query_sample.cn_fname,
args->output_dir,args->control_sample.name,args->query_sample.name
);
fclose(fp);
py_plot_cnv(fname,args->plot_th);
free(fname);
}
static void destroy_data(args_t *args)
{
bcf_sr_destroy(args->files);
hmm_destroy(args->hmm);
free(args->sites);
free(args->eprob);
free(args->tprob);
free(args->summary_fname);
free(args->query_sample.dat_fname);
free(args->query_sample.cn_fname);
free(args->query_sample.summary_fname);
free(args->control_sample.dat_fname);
free(args->control_sample.cn_fname);
free(args->control_sample.summary_fname);
}
static inline char copy_number_state(args_t *args, int istate, int ismpl)
{
char code[] = "01234";
if ( !args->control_sample.name ) return code[istate];
int idx = ismpl ? istate - (istate/N_STATES)*N_STATES : istate/N_STATES;
return code[idx];
}
static double phred_score(double prob)
{
if ( prob==0 ) return 99;
prob = -4.3429*log(prob);
return prob>99 ? 99 : prob;
}
static void cnv_flush_viterbi(args_t *args)
{
if ( !args->nsites ) return;
hmm_t *hmm = args->hmm;
hmm_run_viterbi(hmm, args->nsites, args->eprob, args->sites);
hmm_run_fwd_bwd(hmm, args->nsites, args->eprob, args->sites);
// Output the results
double qual = 0;
int i,j, isite, start_cn = hmm->vpath[0], start_pos = args->sites[0], istart_pos = 0;
for (isite=0; isite<args->nsites; isite++)
{
int state = hmm->vpath[args->nstates*isite];
double *pval = hmm->fwd + isite*args->nstates;
qual += pval[start_cn];
// output CN and fwd-bwd likelihood for each site
if ( args->query_sample.cn_fh )
{
fprintf(args->query_sample.cn_fh, "%s\t%d\t%c", bcf_hdr_id2name(args->hdr,args->prev_rid), args->sites[isite]+1, copy_number_state(args,state,0));
if ( !args->control_sample.cn_fh )
for (i=0; i<args->nstates; i++) fprintf(args->query_sample.cn_fh, "\t%f", pval[i]);
else
for (i=0; i<N_STATES; i++)
{
double sum = 0;
for (j=0; j<N_STATES; j++) sum += pval[i*N_STATES+j];
fprintf(args->query_sample.cn_fh, "\t%f", sum);
}
fprintf(args->query_sample.cn_fh, "\n");
}
if ( args->control_sample.cn_fh )
{
fprintf(args->control_sample.cn_fh, "%s\t%d\t%c", bcf_hdr_id2name(args->hdr,args->prev_rid), args->sites[isite]+1, copy_number_state(args,state,1));
for (i=0; i<N_STATES; i++)
{
double sum = 0;
for (j=0; j<N_STATES; j++) sum += pval[i+N_STATES*j];
fprintf(args->control_sample.cn_fh, "\t%f", sum);
}
fprintf(args->control_sample.cn_fh, "\n");
}
if ( start_cn != state )
{
char start_cn_query = copy_number_state(args,start_cn,0);
qual = phred_score(1 - qual/(isite - istart_pos));
fprintf(args->query_sample.summary_fh,"RG\t%s\t%d\t%d\t%c\t%.1f\n",bcf_hdr_id2name(args->hdr,args->prev_rid), start_pos+1, args->sites[isite],start_cn_query,qual);
if ( args->control_sample.name )
{
// regions 0-based, half-open
char start_cn_ctrl = copy_number_state(args,start_cn,1);
fprintf(args->control_sample.summary_fh,"RG\t%s\t%d\t%d\t%c\t%.1f\n",bcf_hdr_id2name(args->hdr,args->prev_rid), start_pos+1, args->sites[isite],start_cn_ctrl,qual);
fprintf(args->summary_fh,"RG\t%s\t%d\t%d\t%c\t%c\t%.1f\n",bcf_hdr_id2name(args->hdr,args->prev_rid), start_pos+1, args->sites[isite],start_cn_query,start_cn_ctrl,qual);
}
istart_pos = isite;
start_pos = args->sites[isite];
start_cn = state;
qual = 0;
}
}
qual = phred_score(1 - qual/(isite - istart_pos));
char start_cn_query = copy_number_state(args,start_cn,0);
fprintf(args->query_sample.summary_fh,"RG\t%s\t%d\t%d\t%c\t%.1f\n",bcf_hdr_id2name(args->hdr,args->prev_rid), start_pos+1, args->sites[isite-1]+1,start_cn_query,qual);
if ( args->control_sample.name )
{
char start_cn_ctrl = copy_number_state(args,start_cn,1);
fprintf(args->control_sample.summary_fh,"RG\t%s\t%d\t%d\t%c\t%.1f\n",bcf_hdr_id2name(args->hdr,args->prev_rid), start_pos+1, args->sites[isite-1]+1,start_cn_ctrl,qual);
fprintf(args->summary_fh,"RG\t%s\t%d\t%d\t%c\t%c\t%.1f\n",bcf_hdr_id2name(args->hdr,args->prev_rid), start_pos+1, args->sites[isite-1]+1,start_cn_query,start_cn_ctrl,qual);
}
}
static int set_observed_prob(args_t *args, bcf_fmt_t *baf_fmt, bcf_fmt_t *lrr_fmt, sample_t *smpl)
{
float baf, lrr;
baf = ((float*)(baf_fmt->p + baf_fmt->size*smpl->idx))[0];
if ( bcf_float_is_missing(baf) ) baf = -0.1; // arbitrary negative value == missing value
lrr = ((float*)(lrr_fmt->p + lrr_fmt->size*smpl->idx))[0];
if ( bcf_float_is_missing(lrr) ) lrr = -HUGE_VAL;
if ( baf>=0 ) // skip missing values
fprintf(smpl->dat_fh,"%s\t%d\t%.3f\t%.3f\n",bcf_hdr_id2name(args->hdr,args->prev_rid), args->sites[args->nsites-1]+1,baf,lrr);
if ( baf<0 )
{
// no call: either some technical issue or the call could not be made because it is CN0
int i;
smpl->pobs[CN0] = 0.5;
for (i=1; i<N_STATES; i++) smpl->pobs[i] = (1.0-smpl->pobs[CN0])/(N_STATES-1);
return 0;
}
double pk0, pk13, pk12, pk23, pk1;
pk0 = exp(-baf*baf/args->baf_sigma2);
pk13 = exp(-(baf-1/3.)*(baf-1/3.)/args->baf_sigma2);
pk12 = exp(-(baf-1/2.)*(baf-1/2.)/args->baf_sigma2);
pk23 = exp(-(baf-2/3.)*(baf-2/3.)/args->baf_sigma2);
pk1 = exp(-(baf-1.0)*(baf-1.0)/args->baf_sigma2);
double cn1_baf, cn2_baf, cn3_baf, cn4_baf;
cn1_baf = pk0*(args->pRR+args->pRA/2.) + pk1*(args->pAA+args->pRA/2.);
cn2_baf = pk0*args->pRR + pk1*args->pAA + pk12*args->pRA;
cn3_baf = pk0*args->pRR + pk1*args->pAA + (pk13 + pk23)*args->pRA/2.;
cn4_baf = pk0*args->pRR + pk1*args->pAA + (pk13 + pk23 + pk12)*args->pRA/3.;
double cn1_lrr, cn2_lrr, cn3_lrr, cn4_lrr;
cn1_lrr = exp(-(lrr + 0.45)*(lrr + 0.45)/args->lrr_sigma2);
cn2_lrr = exp(-(lrr - 0.00)*(lrr - 0.00)/args->lrr_sigma2);
cn3_lrr = exp(-(lrr - 0.30)*(lrr - 0.30)/args->lrr_sigma2);
cn4_lrr = exp(-(lrr - 0.75)*(lrr - 0.75)/args->lrr_sigma2);
smpl->pobs[CN0] = 0;
smpl->pobs[CN1] = args->err_prob + (1 - args->baf_bias + args->baf_bias*cn1_baf)*(1 - args->lrr_bias + args->lrr_bias*cn1_lrr);
smpl->pobs[CN2] = args->err_prob + (1 - args->baf_bias + args->baf_bias*cn2_baf)*(1 - args->lrr_bias + args->lrr_bias*cn2_lrr);
smpl->pobs[CN3] = args->err_prob + (1 - args->baf_bias + args->baf_bias*cn3_baf)*(1 - args->lrr_bias + args->lrr_bias*cn3_lrr);
smpl->pobs[CNx] = args->err_prob + (1 - args->baf_bias + args->baf_bias*cn4_baf)*(1 - args->lrr_bias + args->lrr_bias*cn4_lrr);
return 0;
}
static void set_emission_prob(args_t *args)
{
double *eprob = &args->eprob[args->nstates*(args->nsites-1)];
int i;
for (i=0; i<N_STATES; i++)
eprob[i] = args->query_sample.pobs[i];
}
static void set_emission_prob2(args_t *args)
{
double *eprob = &args->eprob[args->nstates*(args->nsites-1)];
int i, j;
for (i=0; i<N_STATES; i++)
{
for (j=0; j<N_STATES; j++)
{
eprob[i*N_STATES+j] = args->query_sample.pobs[i]*args->control_sample.pobs[j];
}
}
}
static void cnv_next_line(args_t *args, bcf1_t *line)
{
if ( !line )
{
// Done, flush viterbi
cnv_flush_viterbi(args);
return;
}
if ( line->rid!=args->prev_rid )
{
// New chromosome
cnv_flush_viterbi(args);
args->prev_rid = line->rid;
args->nsites = 0;
}
// Process line
args->ntot++;
bcf_fmt_t *baf_fmt, *lrr_fmt;
if ( !(baf_fmt = bcf_get_fmt(args->hdr, line, "BAF")) ) return;
if ( !(lrr_fmt = bcf_get_fmt(args->hdr, line, "LRR")) ) return;
// Realloc buffers needed by viterbi and fwd-bwd
args->nsites++;
int m = args->msites;
hts_expand(uint32_t,args->nsites,args->msites,args->sites);
if ( args->msites!=m )
args->eprob = (double*) realloc(args->eprob,sizeof(double)*args->msites*args->nstates);
args->sites[args->nsites-1] = line->pos;
int ret = set_observed_prob(args, baf_fmt,lrr_fmt, &args->query_sample);
if ( ret<0 )
{
args->nsites--;
return;
}
if ( args->control_sample.name )
{
ret = set_observed_prob(args, baf_fmt,lrr_fmt, &args->control_sample);
if ( ret<0 )
{
args->nsites--;
return;
}
}
if ( args->control_sample.name )
set_emission_prob2(args);
else
set_emission_prob(args);
args->nused++;
}
static void usage(args_t *args)
{
fprintf(stderr, "\n");
fprintf(stderr, "About: Copy number variation caller, requires Illumina's B-allele frequency (BAF) and Log R\n");
fprintf(stderr, " Ratio intensity (LRR). The HMM considers the following copy number states: CN 2\n");
fprintf(stderr, " (normal), 1 (single-copy loss), 0 (complete loss), 3 (single-copy gain), x (other)\n");
fprintf(stderr, "Usage: bcftools cnv [OPTIONS] <file.vcf>\n");
fprintf(stderr, "General Options:\n");
fprintf(stderr, " -c, --control-sample <string> optional control sample name to highlight differences\n");
fprintf(stderr, " -o, --output-dir <path> \n");
fprintf(stderr, " -p, --plot-threshold <float> plot aberrant chromosomes with quality at least 'float'\n");
fprintf(stderr, " -r, --regions <region> restrict to comma-separated list of regions\n");
fprintf(stderr, " -R, --regions-file <file> restrict to regions listed in a file\n");
fprintf(stderr, " -s, --query-sample <string> query samply name\n");
fprintf(stderr, " -t, --targets <region> similar to -r but streams rather than index-jumps\n");
fprintf(stderr, " -T, --targets-file <file> similar to -R but streams rather than index-jumps\n");
fprintf(stderr, "HMM Options:\n");
fprintf(stderr, " -b, --BAF-weight <float> relative contribution from BAF [1]\n");
fprintf(stderr, " -e, --err-prob <float> probability of error [0.001]\n");
fprintf(stderr, " -i, --ij-prob <float> transition probability [1e-8]\n");
fprintf(stderr, " -l, --LRR-weight <float> relative contribution from LRR [0.2]\n");
fprintf(stderr, "\n");
exit(1);
}
int main_vcfcnv(int argc, char *argv[])
{
int c;
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->files = bcf_sr_init();
args->plot_th = 1e9; // by default plot none
// How much FORMAT/LRR and FORMAT/BAF matter
args->lrr_bias = 0.2;
args->baf_bias = 1.0;
args->err_prob = 0.001;
// Transition probability to a different state
args->tprob_ij = 1e-8;
// Squared std dev of BAF and LRR values (gaussian noise), estimated from real data (hets, one sample, one chr)
args->baf_sigma2 = 0.08*0.08; // illumina: 0.03
args->lrr_sigma2 = 0.4*0.4; //0.20*0.20; // illumina: 0.18
// args->pRR = 0.69;
// args->pRA = 0.18;
// args->pAA = 0.11;
args->pRR = 0.76;
args->pRA = 0.14;
args->pAA = 0.098;
int regions_is_file = 0, targets_is_file = 0;
static struct option loptions[] =
{
{"err-prob",1,0,'e'},
{"BAF-weight",1,0,'b'},
{"LRR-weight",1,0,'l'},
{"ij-prob",1,0,'i'},
{"sample",1,0,'s'},
{"control",1,0,'c'},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"plot",1,0,'p'},
{"output-dir",1,0,'o'},
{0,0,0,0}
};
char *tmp = NULL;
while ((c = getopt_long(argc, argv, "h?r:R:t:T:s:o:p:l:T:c:b:i:e:",loptions,NULL)) >= 0) {
switch (c) {
case 'e':
args->err_prob = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -e %s\n", optarg);
break;
case 'b':
args->baf_bias = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -b %s\n", optarg);
break;
case 'i':
args->tprob_ij = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -T %s\n", optarg);
break;
case 'l':
args->lrr_bias = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -l %s\n", optarg);
break;
case 'p':
args->plot_th = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -p %s\n", optarg);
break;
case 'o': args->output_dir = optarg; break;
case 's': args->query_sample.name = optarg; break;
case 'c': args->control_sample.name = optarg; break;
case 't': args->targets_list = optarg; break;
case 'T': args->targets_list = optarg; targets_is_file = 1; break;
case 'r': args->regions_list = optarg; break;
case 'R': args->regions_list = optarg; regions_is_file = 1; break;
case 'h':
case '?': usage(args); break;
default: error("Unknown argument: %s\n", optarg);
}
}
char *fname = NULL;
if ( optind>=argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) fname = "-";
}
else fname = argv[optind];
if ( !fname ) usage(args);
if ( args->plot_th<=100 && !args->output_dir ) error("Expected -o option with -p\n");
if ( args->regions_list )
{
if ( bcf_sr_set_regions(args->files, args->regions_list, regions_is_file)<0 )
error("Failed to read the regions: %s\n", args->regions_list);
}
if ( args->targets_list )
{
if ( bcf_sr_set_targets(args->files, args->targets_list, targets_is_file, 0)<0 )
error("Failed to read the targets: %s\n", args->targets_list);
}
if ( !bcf_sr_add_reader(args->files, fname) ) error("Failed to open %s: %s\n", fname,bcf_sr_strerror(args->files->errnum));
init_data(args);
while ( bcf_sr_next_line(args->files) )
{
bcf1_t *line = bcf_sr_get_line(args->files,0);
cnv_next_line(args, line);
}
cnv_next_line(args, NULL);
create_plots(args);
fprintf(stderr,"Number of lines: total/processed: %d/%d\n", args->ntot,args->nused);
destroy_data(args);
free(args);
return 0;
}