-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathImputer.py
115 lines (89 loc) · 3.7 KB
/
Imputer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Truncated tensor Schatten p-norm based low-rank tensor completion, LRTC-TSpN
@author: nietong
"""
import numpy as np
import matplotlib.pyplot as plt
from Helper import Fold,Unfold,compute_MAE,compute_RMSE,compute_MAPE
#Optiminize Truncated Schatten p-norm via ADMM
def truncation(unfoldj,theta):
#calculate the truncation of each unfolding
dim = np.array(unfoldj.shape)
wj = np.zeros(min(dim),)
r = np.int(np.ceil(theta * min(dim)))
wj[r:] = 1
return wj
def GST(sigma,w,p,J=5): #J is the ineer iterations of GST, J=5 is supposed to be enough
#Generalized soft-thresholding algorithm
if w == 0:
Sp = sigma
else:
dt = np.zeros(J+1)
tau = (2*w*(1-p))**(1/(2-p)) + w*p*(2*w*(1-p))**((p-1)/(2-p))
if np.abs(sigma) <= tau:
Sp = 0
else:
dt[0] = np.abs(sigma)
for k in range(J):
dt[k+1] = np.abs(sigma) - w*p*(dt[k])**(p-1)
Sp = np.sign(sigma)*dt[k].item()
return Sp
def update_Mi(mat,alphai,beta,p,theta):
#update M variable
delta = []
u,d,v = np.linalg.svd(mat,full_matrices=False)
wi = truncation(mat,theta)
for j in range(len(d)):
deltaj = GST(d[j],(alphai/beta)*wi[j],p)
delta.append(deltaj)
delta = np.diag(delta)
Mi = u@delta@v
return Mi
def TSpN_ADMM(X_true,X_missing,Omega,alpha,beta,incre,maxIter,epsilon,p,theta):
X = X_missing.copy()
X[Omega==False] = np.mean(X_missing[Omega]) #Initialize with mean values
errList = []
MAE_List = []
RMSE_List = []
dim = X_missing.shape
M = np.zeros(np.insert(dim, 0, len(dim))) #M is a 4-th order tensor
Q = np.zeros(np.insert(dim, 0, len(dim))) #Q is a 4-th order tensor
print('TSp_ADMM Iteration: ')
for k in range(maxIter):
beta = beta * (1+incre) #Increase beta with given step
print(f'\r Processing loop {k}',end = '',flush=True)
#Update M variable
for i in range(np.ndim(X_missing)):
M[i] = Fold(update_Mi(Unfold(X+(1/beta)*Q[i],dim,i),alpha[i],beta,p,theta),dim,i) ##M为四维张量
Xlast = X.copy()
X = np.sum(beta*M-Q,axis=0)/(beta*(X_missing.ndim)) #Updata X variable
X[Omega] = X_missing[Omega] #Observed data
Q = Q + beta*(np.broadcast_to(X, np.insert(dim, 0, len(dim)))-M) #Update Q variable
errList_k = np.linalg.norm(X-Xlast)/np.linalg.norm(Xlast)
errList.append(errList_k)
MAE_List.append(compute_MAE(X_missing,X_true,X))
RMSE_List.append(compute_RMSE(X_missing,X_true,X))
if errList_k < epsilon:
break
print(f'\n total iterations = {k} error={errList[-1]}')
return X,MAE_List,RMSE_List,errList,k
def LRTC_TSpN(complete_tensor,observed_tensor,theta=0.1,alpha=np.array([1,1,1]),p=0.5,beta=1e-5,incre=0.05,maxiter = 200,show_plot = True):
X_true = complete_tensor.copy()
X_missing = observed_tensor.copy()
Omega = (X_missing != 0)
alpha = alpha.reshape(-1,1)
alpha = alpha / np.sum(alpha)
epsilon = 1e-3
X_hat,MAE_List,RMSE_List,errList,it = TSpN_ADMM(X_true,X_missing,Omega,alpha,beta,incre,maxiter,epsilon,p,theta)
MAPE = compute_MAPE(X_missing,X_true,X_hat)
print(f'LRTC-TSpN imptation MAE = {MAE_List[-1]:.3f}')
print(f'LRTC-TSpN imputation RMSE = {RMSE_List[-1]:.3f}')
print(f'LRTC-TSpN imputation MAPE = {MAPE:.3f}')
if show_plot == True:
plt.plot(range(len(MAE_List)),MAE_List)
plt.xlabel('epoch')
plt.ylabel('MAE')
plt.title('Convergence curve of LRTC-TSpN')
return it,X_hat,MAE_List,RMSE_List,errList