-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvexHullTrick.cpp
142 lines (136 loc) · 3.83 KB
/
ConvexHullTrick.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Convex Hull Trick for min query
template<typename T, typename U=__int128>
class ConvexHullTrick {
private:
deque<pair<T,T>> data;
bool check(const pair<T,T> &p3) const {
auto &p1 = data[data.size()-2];
auto &p2 = data[data.size()-1];
return (U)(p2.first-p1.first)*(p3.second-p2.second) < (U)(p2.second-p1.second)*(p3.first-p2.first);
}
public:
ConvexHullTrick(){ }
// add line ax + b
// additions of 'a' shold be given in NON-INCREASING order
void add(T a, T b){
auto p = make_pair(a, b);
while(data.size()>=2 && !check(p)) data.pop_back();
data.push_back(p);
}
// get value of i-th data in deque with x
inline T val(int i, T x) const {
return data[i].first*x + data[i].second;
}
// get minimun value of query x
// queries shold be given in NON-DECREASING order
T query(T x){
while(data.size()>=2 && val(0, x) >= val(1, x)) data.pop_front();
return val(0, x);
}
inline bool empty(){
return data.empty();
}
};
// no constraint for x (use vector instead of deque, deque is too slow!!)
T query(T x) const {
int sz = data.size();
int l = 0, r = sz;
while(r-l>1){
int m = (l+r)/2;
if(val(m, x) - val(m-1, x) < 0) l = m;
else r = m;
}
return val(l, x);
}
// Dynamic Convex Hull Trick
// from https://github.com/niklasb/contest-algos/blob/master/convex_hull/dynamic.cpp
const long is_query = -(1LL<<62);
struct CHTLine {
long m, b;
mutable function<const CHTLine*()> succ;
bool operator<(const CHTLine& rhs) const {
if(rhs.b != is_query) return m < rhs.m;
const CHTLine* s = succ();
if(!s) return 0;
long x = rhs.m;
return b - s->b < (s->m - m) * x;
}
};
struct DynamicCHT : public multiset<CHTLine> {
// will maintain upper hull for maximum
bool bad(iterator y){
auto z = next(y);
if(y == begin()) {
if(z == end()) return false;
return y->m == z->m && y->b <= z->b;
}
auto x = prev(y);
if(z == end()) return y->m == x->m && y->b <= x->b;
// care about overflow in next line
return (x->b - y->b)*(z->m - y->m) >= (y->b - z->b)*(y->m - x->m);
}
void insert_line(long m, long b){
auto y = insert({m, b});
y->succ = [=] { return next(y) == end() ? 0 : &*next(y); };
if(bad(y)){ erase(y); return; }
while(next(y) != end() && bad(next(y))) erase(next(y));
while(y != begin() && bad(prev(y))) erase(prev(y));
}
long eval(long x){
if(size() == 0) { /* do something or return LLONG_MIN */ }
auto l = *lower_bound((CHTLine){x, is_query});
return l.m * x + l.b;
}
};
template<class T>
class LiChaoTree {
private:
struct Line {
T a, b;
Line(T _a, T _b) : a(_a), b(_b) {}
inline T get(T x) const { return a*x + b; }
inline bool over(const Line &lb, const T &x) const {
return get(x) < lb.get(x);
}
};
void update(Line &x, int k, int l, int r) {
int mid = (l + r)/2;
auto lover = x.over(seg[k], xs[l]), rover = x.over(seg[k], xs[mid]);
if(rover) swap(seg[k], x);
if(l+1 >= r) return;
else if(lover != rover) update(x, 2*k+1, l, mid);
else update(x, 2*k+2, mid, r);
}
T query(T x, int k) const {
k += sz - 1;
T ret = seg[k].get(x);
while(k > 0) {
k = (k - 1) / 2;
ret = min(ret, seg[k].get(x));
}
return ret;
}
public:
vector<T> xs;
vector<Line> seg;
int sz = 0;
LiChaoTree() {}
LiChaoTree(const vector<T> &x, T _INF) : xs(x) {
sz = 1;
while(sz < (int)xs.size()) sz *= 2;
while((int)xs.size() < sz) xs.push_back(xs.back() + 1);
seg.assign(2*sz - 1, Line(0, _INF));
}
void update(T a, T b) { // ax+b
if(sz == 0) return;
Line l(a, b);
update(l, 0, 0, sz);
}
T query(int k) const { // min-query to k-th x (xs[k])
return query(xs[k], k);
}
T query_x(T x) const { // min-query x (actual value)
int k = lower_bound(begin(xs), end(xs), x) - begin(xs);
return query(x, k);
}
};