-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathGR3.swift
142 lines (127 loc) · 5.78 KB
/
GR3.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
//
// GR3.swift
// AlgorithmsSwift
//
// Created by Michael Ho on 10/28/20.
//
class GR3 {
/**
Union-find is used to detect if there is a cycle existing in a undirected graph. Note that we cannot use union-find
to detect cycles in a directed graphs since a directed graph cannot be represented using the disjoint-set. Since I
apply union by rank and path compression to optimize the algorithm, the runtime is O(logN).
- Parameter graph: An undirected graph.
- Returns: A boolean indicates if the cycle exists in the graph.
*/
func isCycleExisting(_ graph: Graph) -> Bool {
guard !graph.isDirected else {
fatalError("we cannot use union-find to detect cycles in a directed graphs")
}
var parents = [Vertex : Vertex]()
var rank = [Vertex : Int]()
for edge in graph.undirectedEdges {
let sourceParent = find(&parents, &rank, edge.src)
let destParent = find(&parents, &rank, edge.dest)
if sourceParent == destParent {
return true
}
union(&parents, &rank, sourceParent, destParent)
}
return false
}
/**
Utility function used to union two vertices. Union by rank applied.
- Parameter parents: A dictionary that maps parents and children vertices.
- Parameter rank: The rank used by union by rank method.
- Parameter vertex1: The first vertex to be merged.
- Parameter vertex2: The second vertex that merges the first one.
*/
private func union(_ parents: inout [Vertex : Vertex], _ rank: inout [Vertex : Int], _ vertex1: Vertex, _ vertex2: Vertex) {
let parent1 = find(&parents, &rank, vertex1)
let parent2 = find(&parents, &rank, vertex2)
// After find(), each vertex should have rank value initializd/assigned.
if rank[parent1]! > rank[parent2]! {
parents[parent2] = parent1
} else if rank[parent2]! > rank[parent1]! {
parents[parent1] = parent2
} else {
parents[parent2] = parent1
rank[parent1]! += 1
}
}
/**
Utility function used to find the subset that has the given vertex. Path compression applied.
- Parameter parents: A dictionary that maps parents and children vertices in the form of [child vertext : parent vertex].
- Parameter rank: The rank used by union by rank method.
- Parameter vertex: The vertex to search in parents.
- Returns: The parent vertex of the given vertex.
*/
private func find(_ parents: inout [Vertex : Vertex], _ rank: inout [Vertex : Int], _ vertex: Vertex) -> Vertex {
if let parent = parents[vertex] {
if parent != vertex {
parents[vertex] = find(&parents, &rank, parent)
}
return parents[vertex]!
} else {
// Set the default value
rank[vertex] = 0
return vertex
}
}
/**
A graph is bipartite if we can split its set of vertices into two independent subsets A and B, such that every edge connects vertex from
A to B or vice versa. If there is any edge connecting vertices internally in a subset, then the graph is not bipartite.
- Parameter graph: An undirected graph.
- Returns: A boolean indicates if the graph is bipartite.
*/
func isBipartite(_ graph: Graph) -> Bool {
guard !graph.isDirected else {
fatalError("we cannot use union-find to determine bipartite if a graph is directed.")
}
var parents = [Vertex : Vertex]()
var rank = [Vertex : Int]()
for vertex in graph.adjacencyLists.keys {
let list = Array(graph.adjacencyLists[vertex]!)
for idx in 0..<list.count {
let sourceParent = find(&parents, &rank, vertex)
let destParent = find(&parents, &rank, list[idx].dest)
if sourceParent == destParent {
return false
}
// All other vertices connected to the current should be unioned in the other subset.
if idx > 0 {
union(&parents, &rank, list[idx - 1].dest, list[idx].dest)
}
}
}
return true
}
/**
Function to solve Miniumum Spanning Tree (MST) problem. Given a connected and undirected graph, a spanning tree of that graph is a subgraph in a tree form
that has (V – 1) edges, where V is the number of vertices. A graph can have multiple spanning trees. A MST for a weighted, connected and undirected graph
is a spanning tree with weight less than or equal to all other spanning trees. Runtime: O(ELogE + ELogV), where O(ELogE) comes from sorting and O(ELogV)
comes from union-find on each edge.
- Parameter graph: An undirected graph.
- Returns: An integer represents the total weight of minimum spanning tree.
*/
func findMinimumSpanningTree(_ graph: Graph) -> Int {
let edges = graph.undirectedEdges.sorted { $0.weight < $1.weight }
var minWeight = 0
var parents = [Vertex : Vertex]()
var rank = [Vertex : Int]()
var edgeCount = 0
for edge in edges {
if edgeCount == graph.adjacencyLists.keys.count - 1 {
// Stop when edge count is equal to V - 1.
break
}
let sourceParent = find(&parents, &rank, edge.src)
let destParent = find(&parents, &rank, edge.dest)
if sourceParent != destParent {
union(&parents, &rank, sourceParent, destParent)
edgeCount += 1
minWeight += edge.weight
}
}
return minWeight
}
}