-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_legacy_huggingface.py
85 lines (73 loc) · 3.04 KB
/
eval_legacy_huggingface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import argparse
import pytorch_lightning as pl
from main import process_deprecated
from pytorch_lightning.loggers import WandbLogger
from custom_data import NbhoodDataModule
from kgt5_model import KGT5_Model
from omegaconf import DictConfig, OmegaConf, open_dict
from tqdm import tqdm
def move_to_device(batch, device):
for key, value in batch.items():
if type(value) is torch.Tensor:
batch[key] = value.to(device)
return batch
def run(checkpoint_path: str, dataset_name: str, v1: bool, is_legacy: bool, split: str, device: str, descriptions: bool) -> None:
config = OmegaConf.load(os.path.join("conf", "config.yaml"))
config.dataset.v1 = v1
config.dataset.name = dataset_name
config.dataset.is_legacy = is_legacy
config.output_dir = checkpoint_path
config = process_deprecated(config)
config.eval.num_predictions = 500
config.descriptions.use = descriptions
print(OmegaConf.to_yaml(config))
print("output written to", config.output_dir)
dm = NbhoodDataModule(config=config)
t5_model = AutoModelForSeq2SeqLM.from_pretrained(args["model"]).to(device)
try:
tokenizer = AutoTokenizer.from_pretrained(args["model"])
dm.tokenizer = tokenizer
except:
print("no pretrained tokenizer stored with checkpoint, using default one.")
model = KGT5_Model(config=config, data_module=dm).to(device)
model.model = t5_model
dm.setup(stage=split)
if split == "valid":
data_loader = dm.val_dataloader()
else:
data_loader = getattr(dm, f"{split}_dataloader")()
rank_dicts = list()
for batch in tqdm(data_loader):
rank_dicts.append(model.evaluate(move_to_device(batch, device), mode=split))
model.metric_aggregation(rank_dicts)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test kgt5 model')
parser.add_argument('-m', '--model', help='Path to checkpoint',
required=True)
parser.add_argument('-s', '--split', help='Split to evaluate on',
default="test")
parser.add_argument('-d', '--dataset', help='dataset name',
default="wikidata5m_v3")
parser.add_argument('-dev', '--device', help='compute device',
default="cuda")
parser.add_argument(
'--v1',
action='store_true',
help="whether the model is the original KGT5 without context",
)
parser.add_argument(
'--is_legacy',
action='store_true',
help="whether the old input format should be used",
)
parser.add_argument(
'--descriptions',
action='store_true',
help="whether the old input format should be used",
)
args = vars(parser.parse_args())
torch.set_float32_matmul_precision('medium')
run(checkpoint_path=args["model"], dataset_name=args["dataset"], v1=args["v1"], is_legacy=args["is_legacy"], split=args["split"], device=args["device"], descriptions=args["descriptions"])