-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkgt5_model.py
179 lines (160 loc) · 6.98 KB
/
kgt5_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import pytorch_lightning as pl
from transformers import T5Config, T5ForConditionalGeneration, Adafactor
import numpy as np
import torch
from collections import defaultdict
from huggingface_hub import PyTorchModelHubMixin
class KGT5_Model(pl.LightningModule, PyTorchModelHubMixin):
def __init__(self,
config,
data_module,
model_size='t5-small',
use_ptlm=False,
):
super().__init__()
self.config = config
self.dataset = data_module.dataset
self.num_predictions = self.config.eval.num_predictions
self.max_length = self.config.eval.max_length
self.tokenizer = data_module.tokenizer
vocab_size = self.tokenizer.vocab_size
if self.tokenizer.vocab_size == 32100:
vocab_size = 32128 # TODO this is hack for default t5 tokenizer. don't know why this happens
print('Vocab size: ', vocab_size)
if not use_ptlm:
t5_config = T5Config().from_pretrained(model_size)
t5_config.vocab_size = vocab_size
self.model = T5ForConditionalGeneration(t5_config)
print('Model loaded from scratch!')
else:
self.model = T5ForConditionalGeneration.from_pretrained(model_size)
print('Initialized model from pretrained weights (LM)')
def training_step(self, batch, batch_idx):
outputs = self.model(**batch)
loss = outputs.loss
self.log("loss", loss.detach())
return loss
def configure_optimizers(self):
print('Using default adafactor, lr=None')
optimizer = Adafactor(self.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
return optimizer
def get_scores(self, ids, scores):
pad_token_id = self.tokenizer.pad_token_id
# ids is list of tokenized strings
# scores is a list of tensors. each tensor contains score of each token in vocab
# conditioned on ids till that point
# stack scores
scores = torch.stack(scores, dim=1)
# after stacking, shape is (batch_size*num_return_sequences, num tokens in sequence, vocab size)
# get probs
log_probs = torch.log_softmax(scores, dim=2)
# remove start token
ids = ids[:, 1:]
# gather needed probs
x = ids.unsqueeze(-1).expand(log_probs.shape)
needed_logits = torch.gather(log_probs, 2, x)
final_logits = needed_logits[:, :, 0]
padded_mask = (ids == pad_token_id)
final_logits[padded_mask] = 0
final_scores = final_logits.sum(dim=-1)
return final_scores
# common function for test and val evaluation
def evaluate(self, batch, mode='val'):
# Todo: this method assumes a batch size of 1 currently, fix if needed
# parsing the input
input_batch = {
'input_ids': batch['input_ids'],
'attention_mask': batch['attention_mask'],
'temperature': 1.0, # TODO: make this argument?
'do_sample': True,
'num_return_sequences': self.num_predictions,
'num_beams': 1,
'eos_token_id': self.tokenizer.eos_token_id,
'pad_token_id': self.tokenizer.pad_token_id,
'max_length': self.max_length,
'output_scores': True,
'return_dict_in_generate': True,
}
outputs = self.generate(**input_batch)#, max_new_tokens=128)
sequences = outputs.sequences
scores = outputs.scores
scores = self.get_scores(sequences, scores)
predictions = self.tokenizer.batch_decode(sequences, skip_special_tokens=True)
targets = batch["targets"]
queries = batch["queries"]
is_tail_pred = batch["is_tail_pred"][0]
target = targets[0]
query = queries[0]
ranks_dict = defaultdict(list)
preds = np.array(predictions)
true_pos = (preds == target).nonzero()[0]
if len(true_pos) == 0:
ranks_dict["ranks"].append(self.dataset.num_entities)
if is_tail_pred:
ranks_dict["tail_ranks"].append(self.dataset.num_entities)
else:
ranks_dict["head_ranks"].append(self.dataset.num_entities)
return ranks_dict
true_pos = true_pos[0]
true_score = scores[true_pos]
true_answers = self.dataset.filter_dict[query]
unique_preds, unique_indices = np.unique(preds, return_index=True)
scores = scores.detach().cpu().numpy()
relevant_scores = scores[unique_indices]
rank = 0
ties = 0
for p, score in zip(unique_preds.tolist(), relevant_scores.tolist()):
if p in true_answers:
continue
if self.dataset.entity_inverse_alias_dict.get(p, None) is None:
continue
if score > true_score:
rank += 1
if score == true_score:
ties += 1
ranks_dict["ranks"].append(rank + ties // 2 + 1)
if is_tail_pred:
ranks_dict["tail_ranks"].append(rank + ties // 2 + 1)
else:
ranks_dict["head_ranks"].append(rank + ties // 2 + 1)
return ranks_dict
def generate(self, **kwargs):
return self.model.generate(**kwargs)
# validation loop
def validation_step(self, batch, batch_idx):
return self.evaluate(batch, mode='val')
def test_step(self, batch, batch_idx):
return self.evaluate(batch, mode='test')
def metric_aggregation(self, ranks_dicts):
ranks = np.array([rd["ranks"] for rd in ranks_dicts]).squeeze()
head_ranks = np.array([rd["head_ranks"] for rd in ranks_dicts if len(rd["head_ranks"]) > 0]).squeeze()
tail_ranks = np.array([rd["tail_ranks"] for rd in ranks_dicts if len(rd["tail_ranks"]) > 0]).squeeze()
for r, suffix in zip([ranks, head_ranks, tail_ranks], ["", "_head", "_tail"]):
if len(r) != 0:
mrr = np.mean(1/r).item()
h1 = np.mean(r <= 1).item()
h3 = np.mean(r <= 3).item()
h10 = np.mean(r <= 10).item()
else:
mrr = 0.0
h1 = 0.0
h3 = 0.0
h10 = 0.0
self.log(f"mrr{suffix}", mrr, sync_dist=True)
self.log(f"h1{suffix}", h1, sync_dist=True)
self.log(f"h3{suffix}", h3, sync_dist=True)
self.log(f"h10{suffix}", h10, sync_dist=True)
print(f"\nmrr{suffix}", mrr)
print(f"h1{suffix}", h1)
print(f"h3{suffix}", h3)
print(f"h10{suffix}", h10)
def on_validation_epoch_start(self) -> None:
# call filterdict to make sure it is created
self.dataset.filter_dict
def on_test_epoch_start(self) -> None:
# call filterdict to make sure it is created
self.dataset.filter_dict
def validation_epoch_end(self, ranks):
return self.metric_aggregation(ranks)
def test_epoch_end(self, ranks):
return self.metric_aggregation(ranks)