You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Same issue as #179. Doing the fix suggested by @kinoc doesn't work. For me, the problem comes at this stage:- learner.lr_find(start_lr=1e-5,optimizer_type='lamb')
This results in this stack trace:-
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-13-fc2a900ad6bc> in <module>()
----> 1 learner.lr_find(start_lr=1e-5,optimizer_type='lamb')
16 frames
/usr/local/lib/python3.6/dist-packages/fast_bert/learner_cls.py in lr_find(self, start_lr, end_lr, use_val_loss, optimizer_type, num_iter, step_mode, smooth_f, diverge_th)
654 for iteration in tqdm(range(num_iter)):
655 # train on batch and retrieve loss
--> 656 loss = self._train_batch(train_iter)
657 if use_val_loss:
658 loss = self.validate(quiet=True, loss_only=True)["loss"]
/usr/local/lib/python3.6/dist-packages/fast_bert/learner_cls.py in _train_batch(self, train_iter)
699 inputs["token_type_ids"] = batch[2]
700
--> 701 outputs = self.model(**inputs)
702 loss = outputs[
703 0
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/transformers/modeling_roberta.py in forward(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, labels, output_attentions, output_hidden_states)
342 inputs_embeds=inputs_embeds,
343 output_attentions=output_attentions,
--> 344 output_hidden_states=output_hidden_states,
345 )
346 sequence_output = outputs[0]
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, output_attentions, output_hidden_states)
760 encoder_attention_mask=encoder_extended_attention_mask,
761 output_attentions=output_attentions,
--> 762 output_hidden_states=output_hidden_states,
763 )
764 sequence_output = encoder_outputs[0]
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions, output_hidden_states)
437 encoder_hidden_states,
438 encoder_attention_mask,
--> 439 output_attentions,
440 )
441 hidden_states = layer_outputs[0]
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions)
369 ):
370 self_attention_outputs = self.attention(
--> 371 hidden_states, attention_mask, head_mask, output_attentions=output_attentions,
372 )
373 attention_output = self_attention_outputs[0]
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions)
313 ):
314 self_outputs = self.self(
--> 315 hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions,
316 )
317 attention_output = self.output(self_outputs[0], hidden_states)
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions)
219 output_attentions=False,
220 ):
--> 221 mixed_query_layer = self.query(hidden_states)
222
223 # If this is instantiated as a cross-attention module, the keys
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/linear.py in forward(self, input)
91
92 def forward(self, input: Tensor) -> Tensor:
---> 93 return F.linear(input, self.weight, self.bias)
94
95 def extra_repr(self) -> str:
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py in linear(input, weight, bias)
1690 ret = torch.addmm(bias, input, weight.t())
1691 else:
-> 1692 output = input.matmul(weight.t())
1693 if bias is not None:
1694 output += bias
RuntimeError: CUDA error: CUBLAS_STATUS_ALLOC_FAILED when calling `cublasCreate(handle)`
Can anyone provide some insight on how to solve this error?
The text was updated successfully, but these errors were encountered:
Same issue as #179. Doing the fix suggested by @kinoc doesn't work. For me, the problem comes at this stage:-
learner.lr_find(start_lr=1e-5,optimizer_type='lamb')
This results in this stack trace:-
The text was updated successfully, but these errors were encountered: