Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUBLAS_STATUS_ALLOC_FAILED when calling cublasCreate(handle) #283

Open
neel04 opened this issue Feb 4, 2021 · 0 comments
Open

CUBLAS_STATUS_ALLOC_FAILED when calling cublasCreate(handle) #283

neel04 opened this issue Feb 4, 2021 · 0 comments

Comments

@neel04
Copy link

neel04 commented Feb 4, 2021

Same issue as #179. Doing the fix suggested by @kinoc doesn't work. For me, the problem comes at this stage:-
learner.lr_find(start_lr=1e-5,optimizer_type='lamb')

This results in this stack trace:-

---------------------------------------------------------------------------

RuntimeError                              Traceback (most recent call last)

<ipython-input-13-fc2a900ad6bc> in <module>()
----> 1 learner.lr_find(start_lr=1e-5,optimizer_type='lamb')

16 frames

/usr/local/lib/python3.6/dist-packages/fast_bert/learner_cls.py in lr_find(self, start_lr, end_lr, use_val_loss, optimizer_type, num_iter, step_mode, smooth_f, diverge_th)
    654         for iteration in tqdm(range(num_iter)):
    655             # train on batch and retrieve loss
--> 656             loss = self._train_batch(train_iter)
    657             if use_val_loss:
    658                 loss = self.validate(quiet=True, loss_only=True)["loss"]

/usr/local/lib/python3.6/dist-packages/fast_bert/learner_cls.py in _train_batch(self, train_iter)
    699                 inputs["token_type_ids"] = batch[2]
    700 
--> 701             outputs = self.model(**inputs)
    702             loss = outputs[
    703                 0

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/usr/local/lib/python3.6/dist-packages/transformers/modeling_roberta.py in forward(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, labels, output_attentions, output_hidden_states)
    342             inputs_embeds=inputs_embeds,
    343             output_attentions=output_attentions,
--> 344             output_hidden_states=output_hidden_states,
    345         )
    346         sequence_output = outputs[0]

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, output_attentions, output_hidden_states)
    760             encoder_attention_mask=encoder_extended_attention_mask,
    761             output_attentions=output_attentions,
--> 762             output_hidden_states=output_hidden_states,
    763         )
    764         sequence_output = encoder_outputs[0]

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions, output_hidden_states)
    437                     encoder_hidden_states,
    438                     encoder_attention_mask,
--> 439                     output_attentions,
    440                 )
    441             hidden_states = layer_outputs[0]

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions)
    369     ):
    370         self_attention_outputs = self.attention(
--> 371             hidden_states, attention_mask, head_mask, output_attentions=output_attentions,
    372         )
    373         attention_output = self_attention_outputs[0]

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions)
    313     ):
    314         self_outputs = self.self(
--> 315             hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions,
    316         )
    317         attention_output = self.output(self_outputs[0], hidden_states)

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/usr/local/lib/python3.6/dist-packages/transformers/modeling_bert.py in forward(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions)
    219         output_attentions=False,
    220     ):
--> 221         mixed_query_layer = self.query(hidden_states)
    222 
    223         # If this is instantiated as a cross-attention module, the keys

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/linear.py in forward(self, input)
     91 
     92     def forward(self, input: Tensor) -> Tensor:
---> 93         return F.linear(input, self.weight, self.bias)
     94 
     95     def extra_repr(self) -> str:

/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py in linear(input, weight, bias)
   1690         ret = torch.addmm(bias, input, weight.t())
   1691     else:
-> 1692         output = input.matmul(weight.t())
   1693         if bias is not None:
   1694             output += bias

RuntimeError: CUDA error: CUBLAS_STATUS_ALLOC_FAILED when calling `cublasCreate(handle)`


Can anyone provide some insight on how to solve this error?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant