diff --git a/.gitignore b/.gitignore index f4a5368..663c0ab 100644 --- a/.gitignore +++ b/.gitignore @@ -51,5 +51,7 @@ venv.bak/ # orisenbazuru explore.py notebooks/orisenbazuru/* -cluster/data/medinfmk/ddi/processed/* -ideas.txt.rtf \ No newline at end of file +notebooks/archive/* +ideas.txt.rtf +trained_models +data/processed \ No newline at end of file diff --git a/README.md b/README.md index 43f97ba..25eca29 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,16 @@ -# side-effects +# 📣 AttentionDDI 💊 + +This repository contains the code for the AttentionDDI model implementation with PyTorch. + +AttentionDDI is a Siamese multi-head self-Attention multi-modal neural network model used for drug-drug interaction (DDI) predictions. ## Installation * `git clone` the repo and `cd` into it. -* Run `pip install -e .` to install the repo's python package. \ No newline at end of file +* Run `pip install -e .` to install the repo's python package. + +## Running 🏃 + +1. use `notebooks/jupyter/AttnWSiamese_data_generation.ipynb` to generate DataTensors from the drug similarity matrices. +2. use `notebooks/jupyter/AttnWSiamese_hyperparam.ipynb` to find the best performing model hyperparameters. +3. use `notebooks/jupyter/AttnWSiamese_train_eval.ipynb` to train / test on the best hyperparameters. \ No newline at end of file diff --git a/ddi/dataset.py b/ddi/dataset.py index 5185113..7b426ef 100644 --- a/ddi/dataset.py +++ b/ddi/dataset.py @@ -12,7 +12,7 @@ class DDIDataTensor(Dataset): - def __init__(self, y, X_a, X_b): + def __init__(self, X_a, X_b, y): self.X_a = X_a # tensor.float32, (drug pairs, features) self.X_b = X_b # tensor.float32, (drug pairs, features) @@ -46,7 +46,7 @@ def __len__(self): class PartitionDataTensor(Dataset): - def __init__(self, ddi_datatensor, gip_datatensor, partition_ids, dsettype, fold_num, is_siamese): + def __init__(self, ddi_datatensor, gip_datatensor, partition_ids, dsettype, fold_num, is_siamese=True): self.ddi_datatensor = ddi_datatensor # instance of :class:`DDIDataTensor` self.gip_datatensor = gip_datatensor # instance of :class:`GIPDataTensor` self.partition_ids = partition_ids # list of indices for drug pairs @@ -60,6 +60,7 @@ def __getitem__(self, indx): X_a_gip, X_b_gip, gip_indx = self.gip_datatensor[target_id] # combine gip with other matrices X_a, X_b, y, ddi_indx = self.ddi_datatensor[target_id] + # (sim_types, features) X_a_comb = torch.cat([X_a, X_a_gip], axis=0) X_b_comb = torch.cat([X_b, X_b_gip], axis=0) X_comb = torch.cat([X_a_comb, X_b_comb])#.view(-1) @@ -187,27 +188,6 @@ def get_y_from_interactionmat(interaction_mat): # c_comb = c.tolist() + cl.tolist() # return interaction_mat[r_comb,c_comb] -def compute_gip_profile(adj, bw=1.): - """approach based on Olayan et al. https://doi.org/10.1093/bioinformatics/btx731 """ - - ga = np.dot(adj,np.transpose(adj)) - ga = bw*ga/np.mean(np.diag(ga)) - di = np.diag(ga) - x = np.tile(di,(1,di.shape[0])).reshape(di.shape[0],di.shape[0]) - d =x+np.transpose(x)-2*ga - return np.exp(-d) - -def compute_kernel(mat, k_bandwidth, epsilon=1e-9): - """computes gaussian kernel from 2D matrix - - Approach based on van Laarhoven et al. doi:10.1093/bioinformatics/btr500 - - """ - r, c = mat.shape # 2D matrix - # computes pairwise l2 distance - dist_kernel = squareform(pdist(mat, metric='euclidean')**2) - gamma = k_bandwidth/(np.clip((scpnorm(mat, axis=1, keepdims=True)**2) * 1/c, a_min=epsilon, a_max=None)) - return np.exp(-gamma*dist_kernel) def construct_sampleid_ddipairs(interaction_mat): # take indices off the diagnoal by 1 @@ -339,7 +319,7 @@ def report_label_distrib(labels): print("class:", label, "norm count:", norm_counts[i]) -def generate_partition_datatensor(ddi_datatensor, gip_dtensor_perfold, data_partitions, is_siamese): +def generate_partition_datatensor(ddi_datatensor, gip_dtensor_perfold, data_partitions, is_siamese=True): datatensor_partitions = {} for fold_num in data_partitions: datatensor_partitions[fold_num] = {} diff --git a/ddi/model_attn_siamese.py b/ddi/model_attn_siamese.py index 842c532..3a945b4 100644 --- a/ddi/model_attn_siamese.py +++ b/ddi/model_attn_siamese.py @@ -58,16 +58,19 @@ def forward(self, X): Args: X: tensor, (batch, ddi similarity type vector, input_size) """ - + bsize, num_modal, inp_dim = X.shape + attn_tensor = X.new_zeros((bsize, num_modal, num_modal)) out = [] for SH_layer in self.multihead_pipeline: - z, __ = SH_layer(X) + z, attn_w_normalized = SH_layer(X) out.append(z) + attn_tensor += attn_w_normalized # concat on the feature dimension out = torch.cat(out, -1) + attn_tensor = attn_tensor/len(self.multihead_pipeline) # return a unified vector mapping of the different self-attention blocks - return self.Wz(out) + return self.Wz(out), attn_tensor class TransformerUnit(nn.Module): @@ -98,7 +101,7 @@ def forward(self, X): X: tensor, (batch, ddi similarity type vector, input_size) """ # z is tensor of size (batch, ddi similarity type vector, input_size) - z = self.multihead_attn(X) + z, attn_tensor = self.multihead_attn(X) # layer norm with residual connection z = self.layernorm_1(z + X) z = self.dropout(z) @@ -106,7 +109,7 @@ def forward(self, X): z = self.layernorm_2(z_ff + z) z = self.dropout(z) - return z + return z, attn_tensor class FeatureEmbAttention(nn.Module): def __init__(self, input_dim): @@ -167,7 +170,7 @@ def __init__(self, input_size=586, input_embed_dim=64, num_attn_heads=8, mlp_emb self.Wembed = nn.Linear(input_size, embed_size) trfunit_layers = [TransformerUnit(embed_size, num_attn_heads, mlp_embed_factor, nonlin_func, pdropout) for i in range(num_transformer_units)] - self.trfunit_pipeline = nn.Sequential(*trfunit_layers) + self.trfunit_pipeline = nn.ModuleList(trfunit_layers) self.pooling_mode = pooling_mode if pooling_mode == 'attn': @@ -187,9 +190,15 @@ def forward(self, X): X: tensor, (batch, ddi similarity type vector, input_size) """ - # X = self.Wembed(X) # mean pooling TODO: add global attention layer or other pooling strategy - z = self.trfunit_pipeline(X) + bsize, num_modal, inp_dim = X.shape + attn_tensor = X.new_zeros((bsize, num_modal, num_modal)) + xinput = X + for encunit in self.trfunit_pipeline: + z, attn_h_tensor = encunit(xinput) + xinput = z + attn_tensor += attn_h_tensor + attn_tensor = attn_tensor/len(self.trfunit_pipeline) # pool across similarity type vectors # Note: z.mean(dim=1) will change shape of z to become (batch, input_size) @@ -204,7 +213,7 @@ def forward(self, X): z = self.pooling(z, dim=1) fattn_w_norm = None - return z, fattn_w_norm + return z, fattn_w_norm, attn_tensor class DDI_SiameseTrf(nn.Module): @@ -226,9 +235,7 @@ def __init__(self, input_dim, dist, num_classes=2): # perform log softmax on the feature dimension self.log_softmax = nn.LogSoftmax(dim=-1) - self._init_params_() - print('updated') - + self._init_params_() def _init_params_(self): _init_model_params(self.named_parameters()) diff --git a/ddi/run_workflow.py b/ddi/run_workflow.py index 14518f5..d9d2be6 100644 --- a/ddi/run_workflow.py +++ b/ddi/run_workflow.py @@ -184,7 +184,7 @@ def run_ddi(data_partition, dsettypes, config, options, wrk_dir, else: class_weights = torch.tensor([1]*2).type(fdtype).to(device) # weighting all casess equally - print("class weights", class_weights) + # print("class weights", class_weights) # binary cross entropy loss_bce = torch.nn.BCEWithLogitsLoss(pos_weight=class_weights, reduction='mean') loss_nlll = torch.nn.NLLLoss(weight=class_weights, reduction='mean') # negative log likelihood loss @@ -354,7 +354,7 @@ def run_ddiTrf(data_partition, dsettypes, config, options, wrk_dir, cld = construct_load_dataloaders(data_partition, dsettypes, dataloader_config, wrk_dir) # dictionaries by dsettypes data_loaders, epoch_loss_avgbatch, score_dict, class_weights, flog_out = cld - print(flog_out) + # print(flog_out) device = get_device(to_gpu, gpu_index) # gpu device fdtype = options['fdtype'] @@ -363,7 +363,7 @@ def run_ddiTrf(data_partition, dsettypes, config, options, wrk_dir, else: class_weights = torch.tensor([1]*2).type(fdtype).to(device) # weighting all casess equally - print("class weights", class_weights) + # print("class weights", class_weights) loss_func = torch.nn.NLLLoss(weight=class_weights, reduction='mean') # negative log likelihood loss loss_contrastive = ContrastiveLoss(options.get('contrastiveloss_margin', 0.5), reduction='mean') loss_contrastive.type(fdtype).to(device) @@ -401,10 +401,9 @@ def run_ddiTrf(data_partition, dsettypes, config, options, wrk_dir, for m, m_name in models: m.type(fdtype).to(device) - print('cool') if('train' in data_loaders): weight_decay = options.get('weight_decay', 1e-4) - print('weight_decay', weight_decay) + # print('weight_decay', weight_decay) # split model params into attn parameters and other params # models_param = add_weight_decay_except_attn([ddi_model, ddi_siamese], weight_decay) # see paper Cyclical Learning rates for Training Neural Networks for parameters' choice @@ -415,7 +414,7 @@ def run_ddiTrf(data_partition, dsettypes, config, options, wrk_dir, c_step_size = int(np.ceil(5*num_iter)) # this should be 2-10 times num_iter base_lr = 3e-4 max_lr = 5*base_lr # 3-5 times base_lr - print('max lr', max_lr) + # print('max lr', max_lr) optimizer = torch.optim.Adam(models_param, weight_decay=weight_decay, lr=base_lr) cyc_scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr, max_lr, step_size_up=c_step_size, mode='triangular', cycle_momentum=False) @@ -432,6 +431,8 @@ def run_ddiTrf(data_partition, dsettypes, config, options, wrk_dir, ReaderWriter.dump_data(options, os.path.join(config_dir, 'exp_options.pkl')) # store attention weights for validation and test set seqid_fattnw_map = {dsettype: {'X_a':{}, 'X_b':{}} for dsettype in data_loaders if dsettype in {'test'}} + seqid_hattnw_map = {dsettype: {'X_a':{}, 'X_b':{}} for dsettype in data_loaders if dsettype in {'test'}} + pair_names = ('a', 'b') for epoch in range(num_epochs): @@ -469,13 +470,17 @@ def run_ddiTrf(data_partition, dsettypes, config, options, wrk_dir, with torch.set_grad_enabled(dsettype == 'train'): num_samples_perbatch = X_a.size(0) - z_a, fattn_w_scores_a = ddi_model(X_a) - z_b, fattn_w_scores_b = ddi_model(X_b) + z_a, fattn_w_scores_a, hattn_w_scores_a = ddi_model(X_a) + z_b, fattn_w_scores_b, hattn_w_scores_b = ddi_model(X_b) if(dsettype in seqid_fattnw_map and model_config.pooling_mode == 'attn'): for l, attn_scores in enumerate((fattn_w_scores_a, fattn_w_scores_b)): suffix = pair_names[l] seqid_fattnw_map[dsettype][f'X_{suffix}'].update({sid.item():attn_scores[c].detach().cpu() for c, sid in enumerate(ids)}) + + for l, attn_scores in enumerate((hattn_w_scores_a, hattn_w_scores_b)): + suffix = pair_names[l] + seqid_hattnw_map[dsettype][f'X_{suffix}'].update({sid.item():attn_scores[c].detach().cpu() for c, sid in enumerate(ids)}) logsoftmax_scores, dist = ddi_siamese(z_a, z_b) @@ -520,6 +525,7 @@ def run_ddiTrf(data_partition, dsettypes, config, options, wrk_dir, elif(dsettype == 'test'): # dump attention weights for the test data dump_dict_content(seqid_fattnw_map, ['test'], 'sampleid_fattnw_map', wrk_dir) + dump_dict_content(seqid_hattnw_map, ['test'], 'sampleid_hattnw_map', wrk_dir) if dsettype in {'test', 'validation'}: predictions_df = build_predictions_df(ddi_ids, ref_class, pred_class, prob_scores_arr) predictions_path = os.path.join(wrk_dir, f'predictions_{dsettype}.csv') @@ -632,7 +638,7 @@ def get_best_config_from_hyperparamsearch(hyperparam_search_dir, num_folds=5, nu if(os.path.isfile(score_file)): try: mscore = ReaderWriter.read_data(score_file) - print(mscore) + # print(mscore) scores[config_num, 0] = mscore.best_epoch_indx scores[config_num, 1] = mscore.s_precision scores[config_num, 2] = mscore.s_recall @@ -677,9 +683,13 @@ def train_val_run(datatensor_partitions, config_map, train_val_dir, fold_gpu_map state_dict_dir=None, to_gpu=True, gpu_index=fold_gpu_map[fold_num]) - - -def test_run(datatensor_partitions, config_map, train_val_dir, test_dir, fold_gpu_map, num_epochs=1): +def test_run(datatensor_partitions, + config_map, + train_val_dir, + test_dir, + fold_gpu_map, + suffix_testfname=None, + num_epochs=1): dsettypes = ['test'] mconfig, options = config_map options['num_epochs'] = num_epochs # override number of epochs using user specified value @@ -692,7 +702,10 @@ def test_run(datatensor_partitions, config_map, train_val_dir, test_dir, fold_gp if os.path.exists(train_dir): # load state_dict pth state_dict_pth = os.path.join(train_dir, 'model_statedict') - path = os.path.join(test_dir, 'test', 'fold_{}'.format(fold_num)) + if suffix_testfname: + path = os.path.join(test_dir, f'test_{suffix_testfname}', 'fold_{}'.format(fold_num)) + else: + path = os.path.join(test_dir, 'test', 'fold_{}'.format(fold_num)) test_wrk_dir = create_directory(path) if options.get('loss_func') == 'bceloss': run_ddi(data_partition, dsettypes, mconfig, options, test_wrk_dir, @@ -711,6 +724,17 @@ def train_test_partition(datatensor_partition, config_map, tr_val_dir, fold_gpu_ train_val_run(datatensor_partition, config_map, tr_val_dir, fold_gpu_map, num_epochs=config_epochs) test_run(datatensor_partition, config_map, tr_val_dir, tr_val_dir, fold_gpu_map, num_epochs=1) +def test_partition(datatensor_partition, config_map, tr_val_dir, fold_gpu_map, suffix_testfname): + config_epochs = config_map[0]['model_config'].num_epochs + print(config_epochs) + test_run(datatensor_partition, + config_map, + tr_val_dir, + tr_val_dir, + fold_gpu_map, + suffix_testfname=suffix_testfname, + num_epochs=1) + def train_test_hyperparam_conf(hyperparam_comb, gpu_num, datatensor_partition, fold_gpu_map, exp_dir, num_drugs, queue, exp_iden): text_to_save = str(hyperparam_comb) print("hyperparam_comb:", text_to_save, "gpu num:", str(gpu_num)) diff --git a/ddi/utilities.py b/ddi/utilities.py index 7429d2f..13a99ed 100644 --- a/ddi/utilities.py +++ b/ddi/utilities.py @@ -25,7 +25,7 @@ def __repr__(self): "".format(self.best_epoch_indx, self.s_auc, self.s_aupr, self.s_f1, self.s_precision, self.s_recall) return desc -def get_performance_results(similarity_type, target_dir, num_folds, dsettype): +def get_performance_results(similarity_type, target_dir, num_folds, dsettype, suffix_testfname=None): all_perf = {} num_metrics = 3 # number of metrics to focus on perf_dict = [{} for i in range(num_metrics)] # track auc, aupr, f1 measure @@ -33,13 +33,18 @@ def get_performance_results(similarity_type, target_dir, num_folds, dsettype): prefix = 'train_val' else: prefix = dsettype + if suffix_testfname: + prefix = prefix + "_" + suffix_testfname + for fold_num in range(num_folds): fold_dir = os.path.join(target_dir, '{}'.format(prefix), 'fold_{}'.format(fold_num)) + # print('fold_dir:', fold_dir) score_file = os.path.join(fold_dir, 'score_{}.pkl'.format(dsettype)) + # print(score_file) if os.path.isfile(score_file): mscore = ReaderWriter.read_data(score_file) @@ -60,14 +65,22 @@ def get_performance_results(similarity_type, target_dir, num_folds, dsettype): return perf_df -def build_performance_dfs(similarity_types, target_dir, num_folds, dsettype): +def build_performance_dfs(similarity_types, target_dir, num_folds, dsettype, suffix_testfname=None): auc_df = pd.DataFrame() aupr_df = pd.DataFrame() f1_df = pd.DataFrame() target_dir = create_directory(target_dir, directory="parent") print(target_dir) for sim_type in similarity_types: - s_auc, s_aupr, s_f1 = get_performance_results(sim_type, target_dir, num_folds, dsettype) + if suffix_testfname is not None: + suff_testfname = suffix_testfname + sim_type + else: + suff_testfname = None + s_auc, s_aupr, s_f1 = get_performance_results(sim_type, + target_dir, + num_folds, + dsettype, + suffix_testfname=suff_testfname) auc_df = pd.concat([auc_df, s_auc], sort=True) aupr_df = pd.concat([aupr_df, s_aupr], sort=True) f1_df = pd.concat([f1_df, s_f1], sort=True) @@ -277,7 +290,6 @@ def plot_loss(epoch_loss_avgbatch, wrk_dir): plt.savefig(os.path.join(wrk_dir, os.path.join(dsettype + ".pdf"))) plt.close() - def plot_xy(x, y, xlabel, ylabel, legend, fname, wrk_dir): plt.figure(figsize=(9, 6)) plt.plot(x, y, 'r') @@ -288,92 +300,10 @@ def plot_xy(x, y, xlabel, ylabel, legend, fname, wrk_dir): plt.savefig(os.path.join(wrk_dir, os.path.join(fname + ".pdf"))) plt.close() -def find_youdenj_threshold(ref_target, prob_poslabel, fig_dir=None): - fpr, tpr, thresholds = roc_curve(ref_target, prob_poslabel) - s_auc = roc_auc_score(ref_target, prob_poslabel) - thresholds[0] = 1 - plt.figure(figsize=(9, 6)) - plt.plot(fpr, tpr, 'b+', label=f'TPR vs FPR => AUC:{s_auc:.2}') - plt.xlabel('False positive rate') - plt.ylabel('True positive rate') - plt.title('ROC curve') - youden_indx = np.argmax(tpr - fpr) # the index where the difference between tpr and fpr is max - optimal_threshold = thresholds[youden_indx] - plt.plot(fpr[youden_indx], tpr[youden_indx], marker='o', markersize=3, color="red", label=f'optimal probability threshold:{optimal_threshold:.2}') - plt.legend(loc='best') - if fig_dir: - plt.savefig(f'{fig_dir}.pdf') - plt.close() - return fpr, tpr, thresholds, optimal_threshold - -def analyze_precision_recall_curve(ref_target, prob_poslabel, fig_dir=None): - pr, rec, thresholds = precision_recall_curve(ref_target, prob_poslabel) - avg_precision = average_precision_score(ref_target, prob_poslabel) - thresholds[0] = 1 - plt.figure(figsize=(9, 6)) - plt.plot(rec, pr, 'b+', label=f'Precision vs Recall => Average Precision (AP):{avg_precision:.2}') - plt.xlabel('Recall') - plt.ylabel('Precision') - plt.title('Precision vs. recall curve') - indx = np.argmax(pr + rec) - print('indx', indx) - optimal_threshold = thresholds[indx] - plt.plot(rec[indx], pr[indx], marker='o', markersize=3, color="red", label=f'optimal probability threshold:{optimal_threshold:.2}') - plt.legend(loc='best') - if fig_dir: - plt.savefig(f'{fig_dir}.pdf') - plt.close() - return pr, rec, thresholds, optimal_threshold - def delete_directory(directory): if(os.path.isdir(directory)): shutil.rmtree(directory) - -# code from keras https://github.com/keras-team/keras/blob/master/keras/utils/np_utils.py -def to_categorical(y, num_classes=None, dtype='float32'): - """Converts a class vector (integers) to binary class matrix. - E.g. for use with categorical_crossentropy. - # Arguments - y: class vector to be converted into a matrix - (integers from 0 to num_classes). - num_classes: total number of classes. - dtype: The data type expected by the input, as a string - (`float32`, `float64`, `int32`...) - # Returns - A binary matrix representation of the input. The classes axis - is placed last. - # Example - ```python - # Consider an array of 5 labels out of a set of 3 classes {0, 1, 2}: - > labels - array([0, 2, 1, 2, 0]) - # `to_categorical` converts this into a matrix with as many - # columns as there are classes. The number of rows - # stays the same. - > to_categorical(labels) - array([[ 1., 0., 0.], - [ 0., 0., 1.], - [ 0., 1., 0.], - [ 0., 0., 1.], - [ 1., 0., 0.]], dtype=float32) - ``` - """ - - y = np.array(y, dtype='int') - input_shape = y.shape - if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: - input_shape = tuple(input_shape[:-1]) - y = y.ravel() - if not num_classes: - num_classes = np.max(y) + 1 - n = y.shape[0] - categorical = np.zeros((n, num_classes), dtype=dtype) - categorical[np.arange(n), y] = 1 - output_shape = input_shape + (num_classes,) - categorical = np.reshape(categorical, output_shape) - return categorical - def format_bytes(size): # 2**10 = 1024 power = 2**10 diff --git a/notebooks/jupyter/AttnWSiamese_data_generation.ipynb b/notebooks/jupyter/AttnWSiamese_data_generation.ipynb index 2900422..dd18ab0 100644 --- a/notebooks/jupyter/AttnWSiamese_data_generation.ipynb +++ b/notebooks/jupyter/AttnWSiamese_data_generation.ipynb @@ -18,8 +18,10 @@ "metadata": {}, "outputs": [], "source": [ - "import ddi\n", - "import sys" + "import os\n", + "import sys\n", + "# Provide access to modules in repo.\n", + "sys.path.insert(0, os.path.abspath('../../'))" ] }, { @@ -32,6 +34,7 @@ "import pandas as pd\n", "import datetime\n", "import seaborn as sns\n", + "import ddi\n", "from ddi.dataset import *" ] }, @@ -90,11 +93,12 @@ "metadata": {}, "outputs": [], "source": [ - "DSdataset_name = 'DS3' # or DS2, DS3\n", + "DSdataset_name = 'DS3' # or DDS2, DS3\n", "\n", "# For DS3:\n", - "# interact_matfname_DS3 = 'NCRDInteractionMat'\n", - "interact_matfname_DS3 = 'CRDInteractionMat'" + "if DSdataset_name == 'DS3':\n", + "# interact_matfname_DS3 = 'NCRDInteractionMat'\n", + " interact_matfname_DS3 = 'CRDInteractionMat'" ] }, { @@ -233,6 +237,24 @@ "dpartitions = get_stratified_partitions(y, num_folds=10, valid_set_portion=0.1, random_state=42)" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "targetdata_dir = create_directory(exp_iden, os.path.join(up_dir, processed_dir, DSdataset_name, data_fname))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "targetdata_dir" + ] + }, { "cell_type": "code", "execution_count": null, @@ -516,6 +538,15 @@ "targetdata_dir" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_tensor.shape, X_a.shape, X_b.shape" + ] + }, { "cell_type": "code", "execution_count": null, @@ -539,7 +570,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [], "source": [ @@ -569,6 +600,13 @@ "# dump data on disk\n", "ReaderWriter.dump_tensor(gip_dtensor_perfold, os.path.join(targetdata_dir, 'gip_dtensor_perfold.torch'))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -587,7 +625,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.10" + "version": "3.8.5" } }, "nbformat": 4, diff --git a/notebooks/jupyter/AttnWSiamese_hyperparam.ipynb b/notebooks/jupyter/AttnWSiamese_hyperparam.ipynb index 51873e8..46170f8 100644 --- a/notebooks/jupyter/AttnWSiamese_hyperparam.ipynb +++ b/notebooks/jupyter/AttnWSiamese_hyperparam.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "scrolled": true }, @@ -14,17 +14,19 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "import ddi\n", - "import sys" + "import os\n", + "import sys\n", + "# Provide access to modules in repo.\n", + "sys.path.insert(0, os.path.abspath('../../'))" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -32,12 +34,13 @@ "import pandas as pd\n", "import datetime\n", "import seaborn as sns\n", + "import ddi\n", "from ddi.dataset import *" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -47,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -56,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -67,93 +70,18 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of GPUs available: 8\n", - "cuda:0, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n", - "cuda:1, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n", - "cuda:2, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n", - "cuda:3, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n", - "cuda:4, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n", - "cuda:5, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n", - "cuda:6, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n", - "cuda:7, name:GeForce GTX 1080 Ti\n", - "total memory available: 10.91650390625 GB\n", - "total memory allocated on device: 0.0 GB\n", - "max memory allocated on device: 0.0 GB\n", - "total memory cached on device: 0.0 GB\n", - "max memory cached on device: 0.0 GB\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "report_available_cuda_devices()" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "n_gpu = torch.cuda.device_count()\n", "n_gpu" @@ -163,25 +91,26 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Preparing dataset " + "## Loading dataset " ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "DSdataset_name = 'DS3' # or DS2, DS3\n", + "DSdataset_name = 'DS1' # or DS2, DS3\n", "\n", "# For DS3:\n", - "interact_matfname_DS3 = 'NCRDInteractionMat'\n", - "# interact_matfname_DS3 = 'CRDInteractionMat'" + "if DSdataset_name == 'DS3':\n", + "# interact_matfname_DS3 = 'NCRDInteractionMat'\n", + " interact_matfname_DS3 = 'CRDInteractionMat'" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -228,7 +157,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -260,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -269,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -285,17 +214,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "path_current_dir ../../data/processed/DS3/data_v1\n" - ] - } - ], + "outputs": [], "source": [ "# read data from disk\n", "device_cpu = get_device(to_gpu=False)\n", @@ -314,12 +235,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Run from here" + "### Genearte data tensors" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -337,93 +258,11 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fold_num:0, dsettype:train\n", - "ID(PartitionDataTensor) 47661235389272\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235390784\n", - "\n", - "fold_num:0, dsettype:validation\n", - "ID(PartitionDataTensor) 47661235391064\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235390784\n", - "\n", - "fold_num:0, dsettype:test\n", - "ID(PartitionDataTensor) 47661235389384\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235390784\n", - "\n", - "fold_num:1, dsettype:train\n", - "ID(PartitionDataTensor) 47661235390728\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391176\n", - "\n", - "fold_num:1, dsettype:validation\n", - "ID(PartitionDataTensor) 47661235391400\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391176\n", - "\n", - "fold_num:1, dsettype:test\n", - "ID(PartitionDataTensor) 47661235391456\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391176\n", - "\n", - "fold_num:2, dsettype:train\n", - "ID(PartitionDataTensor) 47661235391512\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391232\n", - "\n", - "fold_num:2, dsettype:validation\n", - "ID(PartitionDataTensor) 47661235391568\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391232\n", - "\n", - "fold_num:2, dsettype:test\n", - "ID(PartitionDataTensor) 47661235391624\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391232\n", - "\n", - "fold_num:3, dsettype:train\n", - "ID(PartitionDataTensor) 47661235391680\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391288\n", - "\n", - "fold_num:3, dsettype:validation\n", - "ID(PartitionDataTensor) 47661235391736\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391288\n", - "\n", - "fold_num:3, dsettype:test\n", - "ID(PartitionDataTensor) 47661235391792\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391288\n", - "\n", - "fold_num:4, dsettype:train\n", - "ID(PartitionDataTensor) 47661235391848\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391344\n", - "\n", - "fold_num:4, dsettype:validation\n", - "ID(PartitionDataTensor) 47661235391904\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391344\n", - "\n", - "fold_num:4, dsettype:test\n", - "ID(PartitionDataTensor) 47661235391960\n", - "ID(DDIDataTensor) 47661235390896\n", - "ID(GIPDataTensor) 47661235391344\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# confirm that we separate PartitionDataTensor object and same reference to DDIDataTensor object!\n", "for fold_num in datatensor_partitions:\n", @@ -439,12 +278,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Train and Evaluate workflow" + "## Train and Evaluate workflow" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -453,7 +292,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -467,30 +306,20 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "807" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "num_drugs" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ + "# example of hyperparameter options to consider\n", "input_embed_dim = [128]\n", "num_attn_heads = [1,2]\n", "num_transformer_units = [1]\n", @@ -499,85 +328,55 @@ "mlp_embed_factor = [2]\n", "pooling_mode = ['attn']\n", "dist_opt = ['cosine']\n", - "l2_reg = [0,1e-8]\n", - "batch_size = [400]\n", - "num_epochs = [200]\n", - "loss_w = [0.05]" + "l2_reg = [0,1e-6, 1e-8]\n", + "batch_size = [400,1000]\n", + "num_epochs = [100, 200]\n", + "loss_w = [0.5, 0.05]" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "8\n" - ] - } - ], - "source": [ - "hyperparam_space = list(itertools.product(*[input_embed_dim, num_attn_heads, num_transformer_units, p_dropout,\n", - " nonlin_func, mlp_embed_factor,pooling_mode,dist_opt, l2_reg, batch_size,\n", - " num_epochs, loss_w]))\n", - "print(len(hyperparam_space))" + "outputs": [], + "source": [ + "hyperparam_opt = (input_embed_dim,num_attn_heads, num_transformer_units, p_dropout, \n", + " nonlin_func, mlp_embed_factor, pooling_mode, dist_opt,\n", + " l2_reg, batch_size, num_epochs, loss_w)" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "hyperparam_opt = (input_embed_dim,num_attn_heads, num_transformer_units, p_dropout, \n", - " nonlin_func, mlp_embed_factor, pooling_mode, dist_opt,\n", - " l2_reg, batch_size, num_epochs)\n" + "hyperparam_space = list(itertools.product(*hyperparam_opt))\n", + "print(len(hyperparam_space))" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "data": { - "text/plain": [ - "'../data/processed/DS3/experiments/simtypeall_NCRDInteractionMat'" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "exp_dir = create_directory(exp_iden, os.path.join(processed_dir, DSdataset_name, 'experiments'))\n", "exp_dir" ] }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "num_folds=10" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Training" + "### Training" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -589,8 +388,7 @@ " q_process.join()\n", " print(\"<<< joined hyperparam search process\")\n", " \n", - "def create_q_process(hyperparam_comb, gpu_num, datatensor_partition, exp_dir, num_drugs, queue, exp_iden):\n", - " fold_gpu_map = {0:gpu_num}\n", + "def create_q_process(hyperparam_comb, gpu_num, datatensor_partition, fold_gpu_map, exp_dir, num_drugs, queue, exp_iden):\n", " return mp.Process(target=ddi.run_workflow.train_test_hyperparam_conf, args=(hyperparam_comb, \n", " gpu_num, \n", " datatensor_partition, \n", @@ -603,51 +401,26 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - ">>> spawning hyperparam search process\n", - ">>> spawning hyperparam search process\n", - ">>> spawning hyperparam search process\n", - ">>> spawning hyperparam search process\n", - ">>> spawning hyperparam search process\n", - ">>> spawning hyperparam search process\n", - ">>> spawning hyperparam search process\n", - ">>> spawning hyperparam search process\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 3\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 2\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 0\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 1\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 5\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 7\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 4\n", - "<<< joined hyperparam search process\n", - "released_gpu_num: 6\n" - ] - } - ], + "outputs": [], "source": [ "import torch.multiprocessing as mp\n", "mp.set_start_method(\"spawn\", force=True)\n", "\n", "queue = mp.Queue()\n", "q_processes = []\n", + "num_hyper_options = len(hyperparam_space)\n", + "spawned_processes = min(n_gpu, num_hyper_options)\n", + "chosen_fold = 0\n", "\n", - "for q_i in range(min(n_gpu, len(hyperparam_space))):\n", + "for q_i in range(spawned_processes):\n", + " \n", + " fold_gpu_map = {chosen_fold:q_i}\n", " q_process = create_q_process(hyperparam_comb=hyperparam_space[q_i], \n", " gpu_num=q_i, \n", - " datatensor_partition={0:datatensor_partitions[0]}, \n", + " datatensor_partition={chosen_fold:datatensor_partitions[chosen_fold]},\n", + " fold_gpu_map=fold_gpu_map,\n", " exp_dir=exp_dir, \n", " num_drugs=num_drugs, \n", " queue=queue,\n", @@ -657,22 +430,31 @@ "\n", "spawned_processes = n_gpu\n", " \n", - "for q_i in range(len(hyperparam_space)):\n", + "for q_i in range(num_hyper_options):\n", " join_q_process(q_processes[q_i])\n", " released_gpu_num = queue.get()\n", " print(\"released_gpu_num:\", released_gpu_num)\n", - " if(spawned_processes < len(hyperparam_space)):\n", - " q_process = create_q_process(hyperparam_comb=hyperparam_space[spawned_processes], \n", - " gpu_num=released_gpu_num, \n", - " datatensor_partition={0:datatensor_partitions[0]}, \n", - " exp_dir=exp_dir, \n", - " num_drugs=num_drugs, \n", - " queue=queue,\n", - " exp_iden=exp_iden)\n", + " if(spawned_processes < num_hyper_options):\n", + " fold_gpu_map = {chosen_fold:released_gpu_num}\n", + " q_process = create_q_process(hyperparam_comb=hyperparam_space[spawned_processes],\n", + " gpu_num=released_gpu_num,\n", + " datatensor_partition={chosen_fold:datatensor_partitions[chosen_fold]},\n", + " fold_gpu_map=fold_gpu_map,\n", + " exp_dir=exp_dir, \n", + " num_drugs=num_drugs, \n", + " queue=queue,\n", + " exp_iden=exp_iden)\n", " q_processes.append(q_process)\n", " spawn_q_process(q_process)\n", " spawned_processes = spawned_processes + 1" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -691,7 +473,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.10" + "version": "3.8.5" } }, "nbformat": 4, diff --git a/notebooks/jupyter/AttnWSiamese_train_eval.ipynb b/notebooks/jupyter/AttnWSiamese_train_eval.ipynb index 1afca78..54771c8 100644 --- a/notebooks/jupyter/AttnWSiamese_train_eval.ipynb +++ b/notebooks/jupyter/AttnWSiamese_train_eval.ipynb @@ -18,8 +18,10 @@ "metadata": {}, "outputs": [], "source": [ - "import ddi\n", - "import sys" + "import os\n", + "import sys\n", + "# Provide access to modules in repo.\n", + "sys.path.insert(0, os.path.abspath('../../'))" ] }, { @@ -40,6 +42,7 @@ "metadata": {}, "outputs": [], "source": [ + "import ddi\n", "from ddi.dataset import *\n", "from ddi.utilities import *\n", "from ddi.run_workflow import *" @@ -79,7 +82,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Preparing dataset " + "## Loading dataset " ] }, { @@ -91,8 +94,9 @@ "DSdataset_name = 'DS1' # or DS2, DS3\n", "\n", "# For DS3:\n", - "# interact_matfname_DS3 = 'NCRDInteractionMat'\n", - "interact_matfname_DS3 = 'CRDInteractionMat'\n", + "if DSdataset_name == 'DS3':\n", + "# interact_matfname_DS3 = 'NCRDInteractionMat'\n", + " interact_matfname_DS3 = 'CRDInteractionMat'\n", "\n", "train_Siamese = True" ] @@ -227,7 +231,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Run from here" + "### Genearte data tensors" ] }, { @@ -308,6 +312,13 @@ "num_drugs" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model configuration" + ] + }, { "cell_type": "code", "execution_count": null, @@ -386,7 +397,7 @@ " similarity_type=exp_iden, \n", " model_name='Transformer', \n", " hyperparam_opt=hyperparam_opt,\n", - " loss_func='nllloss'\n", + " loss_func='nllloss',\n", " margin=margin_v, \n", " loss_w=loss_w)\n", "# mconfig, options = build_dditrf_config_map(input_dim=(num_drugs+1)*(len(similarity_types)+1)*2, \n", @@ -477,8 +488,13 @@ " q_process.join()\n", " print(\"<<< joined hyperparam search process\")\n", " \n", - "def create_q_process(datatensor_partition, config_map, tr_val_dir, fold_gpu_map):\n", - " return mp.Process(target=ddi.run_workflow.train_test_partition, args=(datatensor_partition, config_map, tr_val_dir, fold_gpu_map))" + "def create_q_process(gpu_num, datatensor_partition, config_map, tr_val_dir, fold_gpu_map, queue):\n", + " return mp.Process(target=ddi.run_workflow.train_test_partition, args=(gpu_num,\n", + " datatensor_partition, \n", + " config_map, \n", + " tr_val_dir, \n", + " fold_gpu_map,\n", + " queue))" ] }, { @@ -492,18 +508,6 @@ "datatensor_partitions" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "start_part = 5\n", - "\n", - "fold_gpu_map = {(i+start_part):i for i in range (n_gpu)}\n", - "fold_gpu_map" - ] - }, { "cell_type": "code", "execution_count": null, @@ -515,14 +519,40 @@ "\n", "queue = mp.Queue()\n", "q_processes = []\n", + "num_folds = len(datatensor_partitions)\n", + "num_folds = 2\n", + "spawned_processes = min(n_gpu, num_folds)\n", + "\n", + "for q_i in range(spawned_processes):\n", + " \n", + " fold_gpu_map = {q_i:q_i}\n", + " q_process = create_q_process(gpu_num=q_i,\n", + " datatensor_partition={q_i:datatensor_partitions[q_i]},\n", + " config_map=config_map,\n", + " tr_val_dir=tr_val_dir,\n", + " fold_gpu_map=fold_gpu_map,\n", + " queue=queue)\n", "\n", - "for q_i in fold_gpu_map.keys():\n", - " q_process = create_q_process({q_i:datatensor_partitions[q_i]}, config_map, tr_val_dir, fold_gpu_map)\n", " q_processes.append(q_process)\n", " spawn_q_process(q_process)\n", " \n", - "for q_i in range(n_gpu):\n", - " join_q_process(q_processes[q_i])" + "for q_i in range(num_folds):\n", + " join_q_process(q_processes[q_i])\n", + " released_gpu_num = queue.get()\n", + " print(\"released_gpu_num:\", released_gpu_num)\n", + " if(spawned_processes < num_folds):\n", + " curr_fold = spawned_processes\n", + " fold_gpu_map = {curr_fold:released_gpu_num}\n", + " q_process = create_q_process(gpu_num=released_gpu_num,\n", + " datatensor_partition={curr_fold:datatensor_partitions[curr_fold]},\n", + " config_map=config_map,\n", + " tr_val_dir=tr_val_dir,\n", + " fold_gpu_map=fold_gpu_map,\n", + " queue=queue)\n", + "\n", + " q_processes.append(q_process)\n", + " spawn_q_process(q_process)\n", + " spawned_processes = spawned_processes + 1" ] }, { @@ -531,7 +561,10 @@ "metadata": {}, "outputs": [], "source": [ - "auc_df, aupr_df, f1_df= build_performance_dfs(similarity_types, os.path.relpath(tr_val_dir, '..'), num_folds, 'train')\n", + "auc_df, aupr_df, f1_df= build_performance_dfs(similarity_types, \n", + " os.path.relpath(tr_val_dir, '..'), \n", + " num_folds, \n", + " 'train')\n", "\n", "for perf_name, perf_df in (('auc', auc_df), ('aupr', aupr_df), ('f1', f1_df)):\n", " print(perf_name)\n", @@ -546,7 +579,10 @@ "metadata": {}, "outputs": [], "source": [ - "auc_df, aupr_df, f1_df= build_performance_dfs(similarity_types, os.path.relpath(tr_val_dir, '..'), num_folds, 'test')\n", + "auc_df, aupr_df, f1_df= build_performance_dfs(similarity_types, \n", + " os.path.relpath(tr_val_dir, '..'), \n", + " num_folds, \n", + " 'test')\n", "\n", "for perf_name, perf_df in (('auc', auc_df), ('aupr', aupr_df), ('f1', f1_df)):\n", " print(perf_name)\n", @@ -572,7 +608,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.10" + "version": "3.8.5" } }, "nbformat": 4,