-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_ScanNet.py
302 lines (257 loc) · 14.1 KB
/
train_ScanNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import argparse
import time
import os
import numpy as np
import random
from datasets.ScanNet import Scannettrain, cfl_collate_fn
import torch
import MinkowskiEngine as ME
import torch.nn.functional as F
from torch.utils.data import DataLoader
from models.fpn import Res16FPN18
from eval_ScanNet import eval
from lib.utils import get_pseudo, get_sp_feature, get_fixclassifier
from sklearn.cluster import KMeans, DBSCAN, SpectralClustering, AgglomerativeClustering, MeanShift
import logging
from os.path import join
import warnings
warnings.filterwarnings('ignore')
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser(description='PyTorch Unsuper_3D_Seg')
parser.add_argument('--data_path', type=str, default='data/ScanNet/processed/',
help='pont cloud data path')
parser.add_argument('--sp_path', type=str, default= 'data/ScanNet/initial_superpoints/',
help='initial sp path')
###
parser.add_argument('--save_path', type=str, default='ckpt/ScanNet/',
help='model savepath')
parser.add_argument('--max_epoch', type=list, default=[350, 600], help='max epoch')
parser.add_argument('--max_iter', type=list, default=[50000, 100000], help='max iter')
###
parser.add_argument('--bn_momentum', type=float, default=0.02, help='batchnorm parameters')
parser.add_argument('--conv1_kernel_size', type=int, default=5, help='kernel size of 1st conv layers')
####
parser.add_argument('--lr', type=float, default=1e-1, help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='SGD parameters')
parser.add_argument('--dampening', type=float, default=0.1, help='SGD parameters')
parser.add_argument('--weight-decay', type=float, default=1e-4, help='SGD parameters')
parser.add_argument('--workers', type=int, default=8, help='how many workers for loading data')
parser.add_argument('--cluster_workers', type=int, default=4, help='how many workers for loading data in clustering')
parser.add_argument('--seed', type=int, default=2022, help='random seed')
parser.add_argument('--log-interval', type=int, default=150, help='log interval')
parser.add_argument('--batch_size', type=int, default=8, help='batchsize in training')
parser.add_argument('--voxel_size', type=float, default=0.05, help='voxel size in SparseConv')
parser.add_argument('--input_dim', type=int, default=6, help='network input dimension')### 6 for XYZGB
parser.add_argument('--primitive_num', type=int, default=300, help='how many primitives used in training')
parser.add_argument('--semantic_class', type=int, default=20, help='ground truth semantic class')
parser.add_argument('--feats_dim', type=int, default=128, help='output feature dimension')
parser.add_argument('--pseudo_label_path', default='pseudo_label_scannet/', type=str, help='pseudo label save path')
parser.add_argument('--ignore_label', type=int, default=-1, help='invalid label')
parser.add_argument('--growsp_start', type=int, default=80, help='the start number of growing superpoint')
parser.add_argument('--growsp_end', type=int, default=30, help='the end number of grwoing superpoint')
parser.add_argument('--drop_threshold', type=int, default=30, help='ignore superpoints with few points')
parser.add_argument('--w_rgb', type=float, default=5/5, help='weight for RGB in merging superpoint')
parser.add_argument('--w_xyz', type=float, default=1/5, help='weight for XYZ in merging superpoint')
parser.add_argument('--w_norm', type=float, default=4/5, help='weight for Normal in merging superpoint')
parser.add_argument('--c_rgb', type=float, default=3, help='weight for RGB in clustering primitives')
parser.add_argument('--c_shape', type=float, default=3, help='weight for PFH in clustering primitives')
return parser.parse_args()
def main(args, logger):
'''Prepare Data'''
trainset = Scannettrain(args)
train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, collate_fn=cfl_collate_fn(), num_workers=args.workers, pin_memory=True, worker_init_fn=worker_init_fn(seed))
clusterset = Scannettrain(args)
cluster_loader = DataLoader(clusterset, batch_size=1, collate_fn=cfl_collate_fn(), num_workers=args.cluster_workers, pin_memory=True)
'''Prepare Model/Optimizer'''
model = Res16FPN18(in_channels=args.input_dim, out_channels=args.primitive_num, conv1_kernel_size=args.conv1_kernel_size, config=args)
logger.info(model)
model = model.cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, dampening=args.dampening, weight_decay=args.weight_decay)
scheduler = PolyLR(optimizer, max_iter=args.max_iter[0])
loss = torch.nn.CrossEntropyLoss(ignore_index=-1).cuda()
start_grow_epoch = 0
'''Train and Cluster'''
'''Superpoints will not Grow in 1st Stage'''
is_Growing = False
a = time.time()
for epoch in range(1, args.max_epoch[0] + 1):
'''Take 10 epochs as a round'''
if (epoch - 1) % 10 == 0:
classifier = cluster(args, logger, cluster_loader, model, epoch, start_grow_epoch, is_Growing)
train(train_loader, logger, model, optimizer, loss, epoch, scheduler, classifier)
if epoch % 10 == 0:
torch.save(model.state_dict(), join(args.save_path, 'model_' + str(epoch) + '_checkpoint.pth'))
torch.save(classifier.state_dict(), join(args.save_path, 'cls_' + str(epoch) + '_checkpoint.pth'))
# torch.save(optimizer.state_dict(), join(args.save_path, 'opt_' + str(epoch) + '_checkpoint.pth'))
with torch.no_grad():
o_Acc, m_Acc, s = eval(epoch, args)
logger.info('Epoch: {:02d}, oAcc {:.2f} mAcc {:.2f} IoUs'.format(epoch, o_Acc, m_Acc) + s)
iterations = (epoch + 10) * len(train_loader)
if iterations > args.max_iter[0]:
start_grow_epoch = epoch
break
'''Superpoints will grow in 2nd Stage'''
logger.info('#################################')
logger.info('### Superpoints Begin Grwoing ###')
logger.info('#################################')
is_Growing = True
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, dampening=args.dampening, weight_decay=args.weight_decay)
scheduler = PolyLR(optimizer, max_iter=args.max_iter[1])
for epoch in range(1, args.max_epoch[1] + 1):
epoch += start_grow_epoch
'''Take 10 epochs as a round'''
if (epoch - 1) % 10 == 0:
classifier = cluster(args, logger, cluster_loader, model, epoch, start_grow_epoch, is_Growing)
train(train_loader, logger, model, optimizer, loss, epoch, scheduler, classifier)
if epoch % 10 == 0:
torch.save(model.state_dict(), join(args.save_path, 'model_' + str(epoch) + '_checkpoint.pth'))
torch.save(classifier.state_dict(), join(args.save_path, 'cls_' + str(epoch) + '_checkpoint.pth'))
# torch.save(optimizer.state_dict(), args.save_path + 'opt_' + str(epoch) + '_checkpoint.pth')
with torch.no_grad():
o_Acc, m_Acc, s = eval(epoch, args)
logger.info('Epoch: {:02d}, oAcc {:.2f} mAcc {:.2f} IoUs'.format(epoch, o_Acc, m_Acc) + s)
def cluster(args, logger, cluster_loader, model, epoch, start_grow_epoch=None, is_Growing=False):
time_start = time.time()
cluster_loader.dataset.mode = 'cluster'
current_growsp = None
if is_Growing:
current_growsp = int(args.growsp_start - ((epoch - start_grow_epoch)/args.max_epoch[1])*(args.growsp_start - args.growsp_end))
if current_growsp < args.growsp_end:
current_growsp = args.growsp_end
logger.info('Epoch: {}, Superpoints Grow to {}'.format(epoch, current_growsp))
'''Extract Superpoints Feature'''
feats, labels, sp_index, context = get_sp_feature(args, cluster_loader, model, current_growsp)
sp_feats = torch.cat(feats, dim=0)### will do Kmeans with geometric distance
primitive_labels = KMeans(n_clusters=args.primitive_num, n_jobs=-1).fit_predict(sp_feats.numpy().astype(np.float32))
sp_feats = sp_feats[:,0:args.feats_dim]### drop geometric feature
'''Compute Primitive Centers'''
primitive_centers = torch.zeros((args.primitive_num, args.feats_dim))
for cluster_idx in range(args.primitive_num):
indices = primitive_labels == cluster_idx
cluster_avg = sp_feats[indices].mean(0, keepdims=True)
primitive_centers[cluster_idx] = cluster_avg
primitive_centers = F.normalize(primitive_centers, dim=1)
classifier = get_fixclassifier(in_channel=args.feats_dim, centroids_num=args.primitive_num, centroids=primitive_centers)
'''Compute and Save Pseudo Labels'''
all_pseudo, all_gt, all_pseudo_gt = get_pseudo(args, context, primitive_labels, sp_index)
logger.info('labelled points ratio %.2f clustering time: %.2fs', (all_pseudo!=-1).sum()/all_pseudo.shape[0], time.time() - time_start)
'''Check Superpoint/Primitive Acc in Training'''
sem_num = args.semantic_class
mask = (all_pseudo_gt!=-1)
histogram = np.bincount(sem_num* all_gt.astype(np.int32)[mask] + all_pseudo_gt.astype(np.int32)[mask], minlength=sem_num ** 2).reshape(sem_num, sem_num) # hungarian matching
o_Acc = histogram[range(sem_num), range(sem_num)].sum()/histogram.sum()*100
tp = np.diag(histogram)
fp = np.sum(histogram, 0) - tp
fn = np.sum(histogram, 1) - tp
IoUs = tp / (tp + fp + fn + 1e-8)
m_IoU = np.nanmean(IoUs)
s = '| mIoU {:5.2f} | '.format(100 * m_IoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
logger.info('Superpoints oAcc {:.2f} IoUs'.format(o_Acc) + s)
pseudo_class2gt = -np.ones_like(all_gt)
for i in range(args.primitive_num):
mask = all_pseudo==i
pseudo_class2gt[mask] = torch.mode(torch.from_numpy(all_gt[mask])).values
mask = (pseudo_class2gt!=-1)&(all_gt!=-1)
histogram = np.bincount(sem_num* all_gt.astype(np.int32)[mask] + pseudo_class2gt.astype(np.int32)[mask], minlength=sem_num ** 2).reshape(sem_num, sem_num) # hungarian matching
o_Acc = histogram[range(sem_num), range(sem_num)].sum()/histogram.sum()*100
tp = np.diag(histogram)
fp = np.sum(histogram, 0) - tp
fn = np.sum(histogram, 1) - tp
IoUs = tp / (tp + fp + fn + 1e-8)
m_IoU = np.nanmean(IoUs)
s = '| mIoU {:5.2f} | '.format(100 * m_IoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
logger.info('Primitives oAcc {:.2f} IoUs'.format(o_Acc) + s)
return classifier.cuda()
def train(train_loader, logger, model, optimizer, loss, epoch, scheduler, classifier):
train_loader.dataset.mode = 'train'
model.train()
loss_display = 0
time_curr = time.time()
for batch_idx, data in enumerate(train_loader):
iteration = (epoch - 1) * len(train_loader) + batch_idx+1
coords, features, normals, labels, inverse_map, pseudo_labels, inds, region, index = data
in_field = ME.TensorField(features, coords, device=0)
feats = model(in_field)
feats = feats[inds.long()]
feats = F.normalize(feats, dim=-1)
#
pseudo_labels_comp = pseudo_labels.long().cuda()
logits = F.linear(F.normalize(feats), F.normalize(classifier.weight))
loss_sem = loss(logits * 5, pseudo_labels_comp).mean()## 5 is temperature
loss_display += loss_sem.item()
optimizer.zero_grad()
loss_sem.backward()
optimizer.step()
scheduler.step()
torch.cuda.empty_cache()
torch.cuda.synchronize(torch.device("cuda"))
if (batch_idx+1) % args.log_interval == 0:
time_used = time.time() - time_curr
loss_display /= args.log_interval
logger.info(
'Train Epoch: {} [{}/{} ({:.0f}%)]{}, Loss: {:.10f}, lr: {:.3e}, Elapsed time: {:.4f}s({} iters)'.format(
epoch, (batch_idx+1), len(train_loader), 100. * (batch_idx+1) / len(train_loader),
iteration, loss_display, scheduler.get_lr()[0], time_used, args.log_interval))
time_curr = time.time()
loss_display = 0
from torch.optim.lr_scheduler import LambdaLR
class LambdaStepLR(LambdaLR):
def __init__(self, optimizer, lr_lambda, last_step=-1):
super(LambdaStepLR, self).__init__(optimizer, lr_lambda, last_step)
@property
def last_step(self):
"""Use last_epoch for the step counter"""
return self.last_epoch
@last_step.setter
def last_step(self, v):
self.last_epoch = v
class PolyLR(LambdaStepLR):
"""DeepLab learning rate policy"""
def __init__(self, optimizer, max_iter=50000, power=0.9, last_step=-1):
super(PolyLR, self).__init__(optimizer, lambda s: (1 - s / (max_iter + 1))**power, last_step)
def worker_init_fn(seed):
return lambda x: np.random.seed(seed + x)
def set_logger(log_path):
logger = logging.getLogger()
logger.setLevel(logging.INFO)
# Logging to a file
file_handler = logging.FileHandler(log_path)
file_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s'))
logger.addHandler(file_handler)
# Logging to console
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter('%(message)s'))
logger.addHandler(stream_handler)
return logger
def set_seed(seed):
"""
Unfortunately, backward() of [interpolate] functional seems to be never deterministic.
Below are related threads:
https://github.com/pytorch/pytorch/issues/7068
https://discuss.pytorch.org/t/non-deterministic-behavior-of-pytorch-upsample-interpolate/42842?u=sbelharbi
"""
# Use random seed.
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
if __name__ == '__main__':
args = parse_args()
'''Setup logger'''
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
logger = set_logger(os.path.join(args.save_path, 'train.log'))
'''Random Seed'''
seed = args.seed
set_seed(seed)
main(args, logger)