-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradient_descent.lua
40 lines (35 loc) · 1.04 KB
/
gradient_descent.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
local gradient_descent = {}
t = require('torch')
local function cost_function(X, y, b)
-- take X, y and b (betas) and calculate the value of cost function
m = X:size(1)
errors = X * b - y
return errors:pow(2):sum() / 2 / m
end
local function step(X, y, b, alpha)
-- calculate gradient descent step (update betas and return cost)
m = X:size(1)
b = b - (alpha / m) * (X:transpose(1, 2) * (X * b - y))
return b, cost_function(X, y, b)
end
function gradient_descent.gradient_descent(X, y, b, alpha, precision,
max_iterations)
-- iterate until either precision is met or max_iterations is reached
local costs = {}
n = X:size(2)
if not b then
b = t.zeros(n, 1)
end
b, cost = step(X, y, b, alpha)
i = 1
costs[i] = cost
while true do
b, cost = step(X, y, b, alpha)
chg = cost - unpack(costs, #costs, #costs)
i = i + 1
if (i == max_iterations) or (math.abs(chg) <= precision) then break end
costs[i] = cost
end
return {b=b, costs=costs}
end
return gradient_descent