forked from russdill/bch_verilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbch_defs.vh
127 lines (110 loc) · 3.71 KB
/
bch_defs.vh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/*
* BCH Encode/Decoder Modules
*
* Copyright 2014 - Russ Dill <[email protected]>
* Distributed under 2-clause BSD license as contained in COPYING file.
*/
`ifndef _BCH_DEFS_VH_
`define _BCH_DEFS_VH_
`define MAX_M 16
`define BCH_PARAM_MASK ((1 << `MAX_M) - 1)
`define BCH_PARAM(P, IDX) (((P) >> (`MAX_M*IDX)) & `BCH_PARAM_MASK)
`define BCH_PARAM_SZ (`MAX_M*6)
`define BCH_M(P) `BCH_PARAM(P, 0)
`define BCH_N(P) `BCH_PARAM(P, 1)
`define BCH_K(P) `BCH_PARAM(P, 2)
`define BCH_T(P) `BCH_PARAM(P, 3)
`define BCH_M2N(M) ((1 << M) - 1)
`define BCH_DATA_BITS(P) `BCH_PARAM(P, 4)
`define BCH_SYNDROMES_SZ(P) `BCH_PARAM(P, 5)
`define BCH_ECC_BITS(P) (`BCH_N(P) - `BCH_K(P))
`define BCH_CODE_BITS(P) (`BCH_ECC_BITS(P) + `BCH_DATA_BITS(P))
`define BCH_SIGMA_SZ(P) ((`BCH_T(P)+1)*`BCH_M(P))
`define BCH_CHIEN_SZ(P) ((`BCH_T(P)+1)*`BCH_M(P))
`define BCH_ERR_SZ(P) log2(`BCH_T(P)+1)
`define BCH_PARAMS(M, K, T, B, SC) ((M) | (`BCH_M2N(M) << `MAX_M) | ((K) << (`MAX_M*2)) | ((T) << (`MAX_M*3)) | ((B) << (`MAX_M*4)) | (((SC)*(M)) << (`MAX_M*5)))
`define BCH_SANE `BCH_PARAMS(4, 7, 2, 7, 2)
/* Trinomial */
`define BCH_P3(P) {{`MAX_M{1'b0}} | (1'b1 << P) | 1'b1}
/* Pentanomial */
`define BCH_P5(P1, P2, P3) {{`MAX_M{1'b0}} | (1'b1 << P1) | (1'b1 << P2) | (1'b1 << P3) | 1'b1}
/* Return irreducable polynomial */
/* VLSI Aspects on Inversion in Finite Fields, Mikael Olofsson */
`define BCH_POLYNOMIAL(P) (({ \
`BCH_P3(1), /* m=2 */ \
`BCH_P3(1), \
`BCH_P3(1), \
`BCH_P3(2), /* m=5 */ \
`BCH_P3(1), \
`BCH_P3(1), \
`BCH_P5(4, 3, 2), \
`BCH_P3(4), \
`BCH_P3(3), /* m=10 */ \
`BCH_P3(2), \
`BCH_P5(6, 4, 1), \
`BCH_P5(4, 3, 1), \
`BCH_P5(5, 3, 1), \
`BCH_P3(1), /* m=15 */ \
`BCH_P5(5, 3, 2) \
} >> ((`MAX_M-P)*`MAX_M)) & {`MAX_M{1'b1}})
/* For trinomials, selection of a dual basis is easy */
`define BCH_D_P3(P) {{`MAX_M{1'b0}} | (1'b1 << (P - 1))}
/* For pentanomials, an optimal dual basis is defined for each M */
`define BCH_D_P5(P) {{`MAX_M{1'b0}} | P}
/*
* Calculated XOR gates required for different dual basis values. Values
* are chosen so that they generate a matrix with an upper and lower
* matix that are both easily inverted for conerting back to standard basis
*
* sd/ds
* M = 8
* min 2/2 @ b101
* M = 12
* min 7/6 @ b111
* min 8/5 @ b1111
* M = 13
* min 4/3 @ b111
* M = 14
* min 5/4 @ b111
* M = 16
* min 3/3 @ b101
*/
`define BCH_DUAL(P) (({ \
`BCH_D_P3(1), /* m=2 */ \
`BCH_D_P3(1), \
`BCH_D_P3(1), \
`BCH_D_P3(2), /* m=5 */ \
`BCH_D_P3(1), \
`BCH_D_P3(1), \
`BCH_D_P5(3'b101), \
`BCH_D_P3(4), \
`BCH_D_P3(3), /* m=10 */ \
`BCH_D_P3(2), \
`BCH_D_P5(4'b1111), \
`BCH_D_P5(3'b111), \
`BCH_D_P5(3'b111), \
`BCH_D_P3(1), /* m=15 */ \
`BCH_D_P5(3'b101) \
} >> ((`MAX_M-P)*`MAX_M)) & {`MAX_M{1'b1}})
/* Degree of dual basis */
`define BCH_DUALD(M) (log2(`BCH_DUAL(M)) - 1)
/* Multiply by alpha x*l^1 */
`define BCH_MUL_POLY(M, X, POLY) (`BCH_M2N(M) & (((X) << 1'b1) ^ ((((X) >> ((M)-1'b1)) & 1'b1) ? POLY : 1'b0)))
/* Multiply by alpha x*l^1 */
`define BCH_MUL1(M, X) `BCH_MUL_POLY(M, X, `BCH_POLYNOMIAL(M))
`define BCH_BIT_SEL(N, D) (((D) >> (N)) & 1)
`define BCH_EACH_BIT(FN, OP, D) (`FN(15,(D)) OP `FN(14,(D)) OP \
`FN(13,(D)) OP `FN(12,(D)) OP \
`FN(11,(D)) OP `FN(10,(D)) OP \
`FN(9,(D)) OP `FN(8,(D)) OP \
`FN(7,(D)) OP `FN(6,(D)) OP \
`FN(5,(D)) OP `FN(4,(D)) OP \
`FN(3,(D)) OP `FN(2,(D)) OP \
`FN(1,(D)) OP `FN(0,(D)))
`define BCH_NBITS(D) `BCH_EACH_BIT(BCH_BIT_SEL, +, D)
/*
* Non-zero if irreducible polynomial is of the form x^m + x^P1 + x^P2 + x^P3 + 1
* zero for x^m + x^P + 1
*/
`define BCH_IS_PENTANOMIAL(M) (`BCH_NBITS(`BCH_POLYNOMIAL(M)) == 4)
`endif