This repository has been archived by the owner on Apr 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsizer_output.py
executable file
·165 lines (131 loc) · 5.53 KB
/
sizer_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python3
# VMware Cloud Sizer Companion CLI - output module
################################################################################
### Copyright 2023 VMware, Inc.
### SPDX-License-Identifier: MIT License
################################################################################
import json
import pandas as pd
from pandas import json_normalize
from prettytable import PrettyTable
import time
def generate_table(results):
"""Generates a 'prettytable' using a JSON payload; automatically uses the dictionary keys in the payload as column headers."""
# if type(results) is list:
if type(results) is list:
keyslist = list(results[0].keys())
elif type(results) is dict:
keyslist = list(results.keys())
else:
return False
table = PrettyTable(keyslist)
for dct in results:
table.add_row([dct.get(c, "") for c in keyslist])
return table
def recommendation_transformer(json_data):
'''Extracts the data from the recommendation into discrete dataframes / arrays to be displayed on the screen.'''
# create dict for SDDC overview
if json_data['sddcList'][0]['clusterList']['sazClusters'] is None:
cluster_type = 'mazClusters'
else:
cluster_type = 'sazClusters'
overview_df = pd.json_normalize(json_data['sddcList'][0]['clusterList'][cluster_type]['hostBreakupList'][0])
overview_df = overview_df.transpose()
# strip external storage out of the json, store for later use
if not json_data['sddcList'][0]['externalStorageList']:
ext_storage_df = None
else:
ext_storage_df = pd.json_normalize(json_data['sddcList'][0]['externalStorageList'][0])
ext_storage_df = ext_storage_df.transpose()
# extract vm exceptions
if 'vmExceptions' in json_data['sddcList'][0]:
vm_exceptions = (json_data['sddcList'][0]['vmExceptions']['vmExceptionInfo'])
limited_compat = (json_data['sddcList'][0]['vmExceptions']['limitedHostCompatibility'])
else:
vm_exceptions = None
limited_compat = None
#create array objects to be returned
cluster_json = {}
vm_json = {}
#extract clusters and virtual machines into separate arrays
clusters = (json_data['sddcList'][0]['clusterList'][cluster_type]['clusterInfoList'])
for count, cluster in enumerate(clusters, start=0):
cluster_id = f'cluster_{count}'
df_host_list = pd.json_normalize(cluster, record_path =['hostList'], max_level=1)
df_host_list.drop('vmList', axis=1, inplace=True)
cluster_json[cluster_id] = df_host_list
#enumerate VMs in the cluster
vm_list = []
hosts = (json_data['sddcList'][0]['clusterList'][cluster_type]['clusterInfoList'][count]['hostList'])
for hostcount, host in enumerate(hosts):
vms = (json_data['sddcList'][0]['clusterList'][cluster_type]['clusterInfoList'][count]['hostList'][hostcount]['vmList'])
if vms is not None:
for vmcount, vm in enumerate(vms):
vm_list.append(vm['vmName'])
vm_json[cluster_id] = vm_list
output_array = {}
output_array["overview"] = overview_df
output_array["ext_storage"] = ext_storage_df
output_array["cluster_json"] = cluster_json
output_array["vm_json"] = vm_json
output_array['vm_exceptions'] = vm_exceptions
output_array['limited_compat'] = limited_compat
return output_array
def csv_output(**kwargs):
print()
print("enabled in a future release.")
def excel_output(**kwargs):
print()
print("enabled in a future release.")
def pdf_output(pdf_content):
timestr = time.strftime("%Y%m%d-%H%M%S")
file_name = f'VMC_Sizer_report_{timestr}.pdf'
with open(f'output/{file_name}', 'wb') as f:
f.write(pdf_content)
return file_name
def powerpoint_output(**kwargs):
print()
print("enabled in a future release.")
def terminal_output(**kwargs):
calcs = kwargs['calcs']
assumps = kwargs['assumps']
logs = kwargs['cl']
overview = kwargs['recommendation']['overview']
ext_storage = kwargs['recommendation']['ext_storage']
cluster_json = kwargs['recommendation']['cluster_json']
vm_json = kwargs['recommendation']['vm_json']
vm_exceptions = kwargs['recommendation']['vm_exceptions']
limited_compat = kwargs['recommendation']['limited_compat']
print()
print(overview)
for id, cluster in cluster_json.items():
print(f'\n\n{id}\n', cluster)
for cluster, vm_list in vm_json.items():
print(f'\n\n{cluster} virtual machines:\n', vm_list)
try:
print('\nExternal Storage Capacity:\n')
print(ext_storage)
except:
print("There is no external storage.")
try:
vm_exceptions
print('\nVM exceptions:\n')
table = generate_table(vm_exceptions)
print(table.get_string(fields=['vmName', 'exceptionReason', 'unsupportedResourceTypes', 'preferredHostType', 'chosenHostType']))
except:
print("There are no VM exceptions.")
try:
limited_compat
print('\nHost incompatibilities:\n')
table = generate_table(limited_compat)
print(table.get_string(fields=['vmName', 'exceptionReason', 'unsupportedResourceTypes', 'preferredHostType', 'chosenHostType']))
except:
print("There are no host incompatibilities.")
print()
print("Assumptions:")
for i in assumps:
print(f' * {i}')
# print calculation logs if user desires
if logs is True:
print(calcs)
print("\nAll output files are saved in the '/output' directory.")