-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDALEC_GRASS.f90
793 lines (635 loc) · 34.6 KB
/
DALEC_GRASS.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
! grassland model developed from DALEC_GIS_DFOL_FR
! ----------------------------------------------------------------------------------------------------------------
! POOLS: 1.labile 2.foliar 3.root ! PARAMETERS:
! *4.wood 5.litter 6.som !
! ------------------------------------------ ! 1. Decomposition rate
! FLUXES: 1.GPP ! 2. Fraction of GPP respired
! (daily) 2.temprate ! 3. GSI sens for leaf growth
! 3.respiration_auto ! 4. NPP belowground allocation parameter
! 4.leaf production ! 5. GSI max leaf turnover
! 5.labile production ! 6. TOR roots
! 6.root production ! 7. TOR litter
! 7.aboveground production ! 8. TOR SOM
! 8.labile consumption -> leaves ! 9. Temp factor Q10 (1.2-1.6)
! 9.leaffall factor ! 10. Photosynthetic N use efficiency
! 10.leaf litter production ! 11. GSI max labile turnover
! *11.woodlitter production ! 12. GSI min temperature threshold (K)
! 12.rootlitter production ! 13. GSI max temperature threshold (K)
! 13.respiration het litter ! 14. GSI min photoperiod threshold (sec)
! 14.respiration het som ! 15. LCA - g.C.leaf_m-2
! 15.litter2som ! 16. C labile (initialization)
! 16.labrelease factor(leaf growth) ! 17. C foliar (initialization)
! *17.carbon flux due to fire ! 18. C roots (initialization)
! 18.growing season index ! 19. C litter (initialization)
! 19.animal manure C soil input (per time step) ! 20. GSI max photoperiod threshold (sec)
! 20.animal resp co2 (per time step) ! 21. GSI min VPD threshold (Pa)
! 21.animal ch4 (per time step) ! 22. GSI max VPD threshold (Pa)
! ------------------------------------------ ! 23. critical GPP for LAI increase (gC.m-2.day-1)
! MET: 1.run day ! 24. GSI senstivity for leaf senescence
! 2.min T (C) ! 25. GSI - have I just left a growing state (>1)
! 3.max T (C) ! 26. GSI - initial GSI value
! 4.Radiation (MJ.m-2) ! 27. DM min lim for grazing (kg.DM.ha-1)
! 5.CO2 (ppm) ! 28. DM min lim for cutting (kg.DM.ha-1)
! 6.DOY ! 29. leaf-vs-stem allocation factor
! *7.lagged precip ! 30. C SOM (initialization)
! 8.cutting/grazing : ! 31. DM demand of animal weight (fraction)
! - spatial mode = lai removed (m2.m-2) ! 32. Post-grazing labile loss (fraction)
! - field mode = LSU.ha-1 ! 33. Post-cut labile loss (fraction)
! *9.burnt area fraction ! 34. Minimum grazed biomass to allow grazing
! 10.21-day avg min T (K)
! 11.21-day avg photoperiod (sec)
! 12.21-day avg VPD (Pa)
! *13.Forest mgmt after clearing
! *14.Mean T
! ----------------------------------------------------------------------------------------------------------------
! NOTES : '*' above means not used/applicable for grasslands
! 1 LSU per ha = 1 cow that weighs 650kg and grazes on 1 ha of grassland
! carbon = 0.475 * dry matter
! 1 g.C.m-2 = 1 * 0.021 t.DM.ha-1
! to compile this .f90 into a python shared object (.so) run: f2py -c DALEC_GRASS.f90 -m DALEC_GRASS
! ----------------------------------------------------------------------------------------------------------------
! autotrophic heterotrophic loss due to ---> manure from
! respiration respiration grazing/cutting grazing livestock
! ^ ^ ^ |
! | | | V
!
!PHOTOSYNTHESIS -----> [0] -------> [0] --------------> [0] <-----------------> [0]
! GPP NPP NEE NBE
! ----------------------------------------------------------------------------------------------------------------
module CARBON_MODEL_MOD
implicit none
! make all private
! private
! explicit publics
public :: CARBON_MODEL &
,acm &
,linear_model_gradient
! ACM related parameters
double precision, parameter :: pi = 3.1415927
double precision, parameter :: deg_to_rad = pi/180d0
! local variables for GSI phenology model
double precision :: Tfac,Photofac,VPDfac & ! oC, seconds, Pa
,tmp,gradient &
,fol_turn_crit,lab_turn_crit &
,gsi_history(22),just_grown,LMA
integer :: gsi_lag_remembered
double precision, allocatable, dimension(:) :: tmp_x, tmp_m
contains
!
!--------------------------------------------------------------------
!
subroutine CARBON_MODEL(start,finish,deltat,lat,met,pars &
,nodays,nopars,nomet,nopools,nofluxes &
,LAI,GPP,NEE,POOLS,FLUXES,REMOVED_C,version_code)
! The Data Assimilation Linked Ecosystem Carbon - Growing Season
! Index - Forest Rotation (DALEC_GSI_FR) model.
! The subroutine calls the Aggregated Canopy Model to simulate GPP and
! partitions between various ecosystem carbon pools. These pools are
! subject to turnovers / decompostion resulting in ecosystem phenology and fluxes of CO2
implicit none
! declare input variables
integer, intent(in) :: start &
,finish &
,nodays & ! number of days in simulation
,nopars & ! number of paremeters in vector
,nomet & ! number of meteorological fields
,nopools & ! number of model pools
,nofluxes & ! number of model fluxes
,version_code
double precision, intent(in) :: deltat(nodays) & ! time step in decimal days
,lat & ! site latitude (degrees)
,met(nomet,nodays) & ! met drivers
,pars(nopars) ! number of parameters
double precision, intent(out) :: LAI(nodays) & ! leaf area index
,GPP(nodays) & ! Gross primary productivity
,NEE(nodays) ! net ecosystem exchange of CO2
double precision, intent(out) :: POOLS((nodays+1),nopools) ! vector of ecosystem pools
double precision, intent(out) :: FLUXES(nodays,nofluxes) ! vector of ecosystem fluxes
double precision, intent(out) :: REMOVED_C(2,nodays) ! vector of removed C (grazed,cut)
!f2py intent(in) :: start, finish, deltat, lat, met, pars, nodays, nopars, nomet, nopools, nofluxes, version_code
!f2py intent(out) :: LAI, GPP, NEE, POOLS, FLUXES, REMOVED_C
! declare general local variables
double precision :: gpppars(12) & ! ACM inputs (LAI+met)
,constants(10) ! parameters for ACM
integer :: f,n,test,m
double precision :: foliage_frac_res &
,roots_frac_death &
,labile_loss,foliar_loss &
,roots_loss &
,labile_residue,foliar_residue &
,roots_residue &
,labile_frac_res &
,tot_abg_exp,fol_frac,lab_frac &
,f_root,NPP
integer :: gsi_lag
! load some values
gpppars(4) = 2.0 ! g N leaf_m-2
gpppars(7) = lat
gpppars(9) = -2.0 ! leafWP-soilWP
gpppars(10) = 1.0 ! totaly hydraulic resistance
gpppars(11) = pi
! assign acm parameters
constants(1)=pars(10)
constants(2)=0.0156935
constants(3)=4.22273
constants(4)=208.868
constants(5)=0.0453194
constants(6)=0.37836
constants(7)=7.19298
constants(8)=0.011136
constants(9)=2.1001
constants(10)=0.789798
! post-removal residues and root death | 0:none 1:all
foliage_frac_res = 0.05 ! fraction of removed foliage that goes to litter
labile_frac_res = 0.05 ! fraction of removed labile that goes to litter
roots_frac_death = 0.01 ! fraction of roots that dies and goes to litter
if (start == 1) then
! assigning initial conditions
POOLS(1,1) = pars(16)
POOLS(1,2) = pars(17)
POOLS(1,3) = pars(18)
POOLS(1,4) = 0 ! no wood pools in grasslands
POOLS(1,5) = pars(19)
POOLS(1,6) = pars(30)
! calculate some values once as these are invarient between DALEC runs
if (.not.allocated(tmp_x)) then
! 21 days is the maximum potential so we will fill the maximum potential
! + 1 for safety
allocate(tmp_x(22),tmp_m(nodays))
do f = 1, 22
tmp_x(f) = f
end do
do n = 1, nodays
! calculate the gradient / trend of GSI
if (sum(deltat(1:n)) < 21) then
tmp_m(n) = n-1
else
! else we will try and work out the gradient to see what is happening
! to the system over all. The default assumption will be to consider
! the averaging period of GSI model (i.e. 21 days). If this is not
! possible either the time step of the system is used (if step greater
! than 21 days) or all available steps (if n < 21).
m = 0 ; test = 0
do while (test < 21)
m=m+1 ; test = sum(deltat((n-m):n))
if (m > (n-1)) then
test = 21
endif
end do
tmp_m(n) = m
endif ! for calculating gradient
end do ! calc daily values once
! allocate GSI history dimension
gsi_lag_remembered = max(2,maxval(nint(tmp_m)))
end if ! .not.allocated(tmp_x)
! assign our starting value
gsi_history = pars(24)-1d0
just_grown = pars(25)
endif ! start == 1
! assign climate sensitivities
gsi_lag = gsi_lag_remembered ! added to prevent loss from memory
fol_turn_crit=pars(24)-1d0
lab_turn_crit=pars(3)-1d0
!
! Begin looping through each time step
!
do n = start, finish
! calculate LAI value
! fixed LMA :
LMA = pars(15)
LAI(n) = POOLS(n,2) / LMA
! load next met / lai values for ACM
gpppars(1)=LAI(n) ! LAI
gpppars(2)=met(3,n) ! max temp
gpppars(3)=met(2,n) ! min temp
gpppars(5)=met(5,n) ! co2
gpppars(6)=ceiling(met(6,n)-(deltat(n)*0.5)) ! doy
gpppars(8)=met(4,n) ! radiation
! GPP (gC.m-2.day-1)
if (LAI(n) > 0.) then
FLUXES(n,1) = acm(gpppars,constants)
else
FLUXES(n,1) = 0.
endif
! temprate (i.e. T modified rate of metabolic activity))
FLUXES(n,2) = exp(pars(9)*0.5*(met(3,n)+met(2,n)))
! autotrophic respiration (gC.m-2.day-1)
FLUXES(n,3) = FLUXES(n,1) * pars(2)
! NPP
NPP = FLUXES(n,1) - FLUXES(n,3)
! dynamic allocation to roots vs aboveground biomass after Reyes.et.al.2017 (10.1002/2017MS001022)
! min/max allocation to roots as fraction of NPP
f_root = 1 - exp(-1*pars(4)*LAI(n))
if (f_root < 0.1) then
f_root = 0.1
endif
if (f_root > 0.7) then
f_root = 0.7
endif
! allocation to roots
FLUXES(n,6) = NPP * f_root
! FLUXES(n,6) = NPP * pars(4)
! C left for aboveground allocation
FLUXES(n,7) = NPP - FLUXES(n,6)
! allocation of ABG C to leaves
! FLUXES(n,4) = FLUXES(n,7) * 0.90
FLUXES(n,4) = FLUXES(n,7) * (1 - (pars(29)*(LAI(n)/6)))
! FLUXES(n,4) = FLUXES(n,7) * (1-pars(29))
! allocation of ABG C to labile/stem using pars(26)
! Ostrem.et.al.2013 (10.1080/09064710.2013.819440)
FLUXES(n,5) = FLUXES(n,7) * (pars(29)*(LAI(n)/6))
! FLUXES(n,5) = FLUXES(n,7) * (pars(29))
! labile consumption
FLUXES(n,8) = 0.0
! Calculate the Growing Season Index based on Jolly et al.
! doi: 10.1111/j.1365-2486.2005.00930.x doi:10.1029/2010JG001545.
! It is the product of 3 limiting factors for temperature, photoperiod and
! vapour pressure deficit that grow linearly from 0 to 1 between a calibrated
! min and max value. Photoperiod, VPD and avgTmin are direct input
! temperature limitation, then restrict to 0-1; correction for k-> oC
! Tfac = (met(10,n)-(pars(12)-273.15)) / (pars(13)-pars(12)) ! no need to K->C
Tfac = ( met(10,n)-pars(12)) / (pars(13)-pars(12) )
Tfac = min(1d0,max(0d0,Tfac))
! photoperiod limitation
Photofac = ( met(11,n)-pars(14)) / (pars(20)-pars(14) )
Photofac = min(1d0,max(0d0,Photofac))
! VPD limitation
VPDfac = 1.0 - ( (met(12,n)-pars(21)) / (pars(22)-pars(21)) )
VPDfac = min(1d0,max(0d0,VPDfac))
! calculate and store the GSI index
FLUXES(n,18) = Tfac * Photofac * VPDfac
! we will load up some needed variables
m = tmp_m(n)
! update gsi_history for the calculation
if (n == 1) then
! in first step only we want to take the initial GSI value only
gsi_history(gsi_lag) = FLUXES(n,18)
else
gsi_history((gsi_lag-m):gsi_lag) = FLUXES((n-m):n,18)
endif
! calculate gradient
gradient = linear_model_gradient(tmp_x(1:(gsi_lag)),gsi_history(1:gsi_lag),gsi_lag)
! adjust gradient to daily rate
if (deltat(n) > 1) then
if (nint((sum(deltat((n-m+1):n))) / (gsi_lag-1)) == 0) then
gradient =0
else
gradient = gradient / nint((sum(deltat((n-m+1):n))) / (gsi_lag-1))
endif
endif
gsi_lag_remembered = gsi_lag
! first assume that nothing is happening
FLUXES(n,9) = 0d0 ! leaf turnover
FLUXES(n,16) = 0d0 ! leaf growth
! now update foliage and labile conditions based on gradient calculations
if (gradient < fol_turn_crit .or. FLUXES(n,18) == 0) then
! we are in a decending condition so foliar turnover
FLUXES(n,9) = pars(5)*(1.0-FLUXES(n,18))
just_grown = 0.5
else if (gradient > lab_turn_crit) then
! we are in a assending condition so labile turnover
FLUXES(n,16) = pars(11)*FLUXES(n,18)
just_grown = 1.5
! check carbon return
tmp = POOLS(n,1)*(1d0-(1d0-FLUXES(n,16))**deltat(n))/deltat(n)
tmp = (POOLS(n,2)+tmp)/LMA
gpppars(1)=tmp
tmp = acm(gpppars,constants)
! determine if increase in LAI leads to an improvement in GPP greater
! than critical value, if not then no labile turnover allowed
if ( ((tmp - FLUXES(n,1))/FLUXES(n,1)) < pars(25) ) then
FLUXES(n,16) = 0d0
endif
else
! probaly we want nothing to happen, however if we are at the seasonal
! maximum we will consider further growth still
if (just_grown >= 1.0) then
! we are between so definitely not losing foliage and we have
! previously been growing so maybe we still have a marginal return on
! doing so again
FLUXES(n,16) = pars(11)*FLUXES(n,18)
! but possibly gaining some?
! determine if this is a good idea based on GPP increment
tmp = POOLS(n,1)*(1d0-(1d0-FLUXES(n,16))**deltat(n))/deltat(n)
tmp = (POOLS(n,2)+tmp)/LMA
gpppars(1)=tmp
tmp = acm(gpppars,constants)
! determine if increase in LAI leads to an improvement in GPP greater
! than critical value, if not then no labile turnover allowed
if ( ((tmp - FLUXES(n,1))/FLUXES(n,1)) < pars(23) ) then
FLUXES(n,16) = 0d0
endif
end if ! Just grown?
endif ! gradient choice
! FLUXES WITH TIME DEPENDENCIES
! labile release = P_labile * (1-(1-leafgrowth)**deltat)/deltat
FLUXES(n,8) = POOLS(n,1)*(1.-(1.-FLUXES(n,16))**deltat(n))/deltat(n)
! leaf litter production = P_foliar * (1-(1-leaffall)**deltat)/deltat
FLUXES(n,10) = POOLS(n,2)*(1.-(1.-FLUXES(n,9))**deltat(n))/deltat(n)
! wood litter production
FLUXES(n,11) = 0
! root litter production = P_root * (1-(1-rootTOR)**deltat)/deltat
FLUXES(n,12) = POOLS(n,3)*(1.-(1.-pars(6))**deltat(n))/deltat(n)
! FLUXES WITH TEMP AND TIME DEPENDENCIES
! resp het litter = P_litter * (1-(1-GPP_respired*litterTOR)**deltat)/deltat
FLUXES(n,13) = POOLS(n,5)*(1.-(1.-FLUXES(n,2)*pars(7))**deltat(n))/deltat(n)
! resp het som = P_som * (1-(1-GPP_respired*somTOR)**deltat)/deltat
FLUXES(n,14) = POOLS(n,6)*(1.-(1.-FLUXES(n,2)*pars(8))**deltat(n))/deltat(n)
! litter to som = P_litter * (1-(1-dec_rate*temprate)**deltat)/deltat
FLUXES(n,15) = POOLS(n,5)*(1.-(1.-pars(1)*FLUXES(n,2))**deltat(n))/deltat(n)
! NEE = resp_auto + resp_het_litter + resp_het_som - GPP [i.e. '-' when CO2 sink '+' when CO2 source ]
NEE(n) = (FLUXES(n,3) + FLUXES(n,13) + FLUXES(n,14)) - FLUXES(n,1)
! GPP
GPP(n) = FLUXES(n,1)
! update pools for next timestep
! labile pool = labile_pool[†-1] + (lab_prod - lab_cons)*deltat
POOLS(n+1,1) = POOLS(n,1) + (FLUXES(n,5)-FLUXES(n,8))*deltat(n)
! foliar pool = foliar_pool[†-1] + (leaf_prod - leaf_litter_prod + lab_prod2)*deltat
POOLS(n+1,2) = POOLS(n,2) + (FLUXES(n,4)-FLUXES(n,10) + FLUXES(n,8))*deltat(n)
! wood pool
POOLS(n+1,4) = 0.0
! root pool = root_pool[†-1] + (root_prod - root_litter_prod)*deltat
POOLS(n+1,3) = POOLS(n,3) + (FLUXES(n,6)-FLUXES(n,12))*deltat(n)
! litter pool = litter_pool[†-1] + (leaf_litter_prod + root_litter_prod - resp_het_litter - litter2som)*deltat
POOLS(n+1,5) = POOLS(n,5) + (FLUXES(n,10)+FLUXES(n,12)-FLUXES(n,13)-FLUXES(n,15))*deltat(n)
! som pool = som_pool[†-1] + (litter2som - resp_het_som + wood_litter_prod)
POOLS(n+1,6) = POOLS(n,6) + (FLUXES(n,15)-FLUXES(n,14)+FLUXES(n,11))*deltat(n)
! ------------------------------------------------------------------------------------------------------------- !
! SPATIAL MODE !
! ------------------------------------------------------------------------------------------------------------- !
if (version_code .EQ. 1) then
! CUTTING
! ------------------------------------------------------------------------------------------------------------- !
! if AGB > limit & LAI > 3 & LAI reduction = -1 & no cut in past month
if ( ((POOLS(n+1,2)+POOLS(n+1,1)) .GE. (pars(28)*0.0475)) &
.AND. ( met(6,n) .GE. 91 ) .AND. ( met(6,n) .LE. 304 ) &
! .AND. ( LAI(n) .GE. 3 ) &
.AND. ( met(8,n) .EQ. -1 ) &
.AND. ( REMOVED_C(2,n-1) .EQ. 0 ) .AND. ( REMOVED_C(2,n-2) .EQ. 0 ) &
.AND. ( REMOVED_C(2,n-3) .EQ. 0 ) .AND. ( REMOVED_C(2,n-4) .EQ. 0 ) ) then
! direct C losses
labile_loss = POOLS(n+1,1) * pars(33)
! foliar_loss = max(0.,POOLS(n+1,2) - (pars(27)*0.0475 + labile_loss))
foliar_loss = POOLS(n+1,2) * 0.95 ! 95% of leaves lost after cutting probably 99% lost in reality
roots_loss = 0 ! POOLS(n+1,3) * roots_frac_death ! allocation to roots will be reduced due to reduced LAI
! fraction of harvest wasted
labile_residue = labile_loss * labile_frac_res
foliar_residue = foliar_loss * foliage_frac_res
! if havest yields > 1500 kg.DM.ha-1 proceed with cut
if ( ((foliar_loss-foliar_residue)+(labile_loss-labile_residue)) .GE. (1500*0.0475) ) then
! extracted C via cutting
REMOVED_C(2,n) = (labile_loss-labile_residue) + (foliar_loss-foliar_residue)
! update pools
POOLS(n+1,1) = max(0.,POOLS(n+1,1)-labile_loss)
POOLS(n+1,2) = max(0.,POOLS(n+1,2)-foliar_loss)
POOLS(n+1,3) = max(0.,POOLS(n+1,3)-roots_loss)
POOLS(n+1,4) = 0.0
POOLS(n+1,5) = max(0., POOLS(n+1,5) + (labile_residue+foliar_residue+roots_loss))
POOLS(n+1,6) = max(0., POOLS(n+1,6))
endif
endif ! end cutting process
! GRAZING
! ------------------------------------------------------------------------------------------------------------- !
! if LAI reduction > 0 & AGB > pregraze limit & no cut this and last 2 weeks
if ( (met(8,n) > 0.0) .AND. ( (POOLS(n+1,2)+POOLS(n+1,1)) .GE. (pars(27)*0.0475) ) &
.AND. (REMOVED_C(2,n) .EQ. 0.0) .AND. (REMOVED_C(2,n-1) .EQ. 0.0) .AND. (REMOVED_C(2,n-2) .EQ. 0.0) &
.AND. ( met(8,n+1) .NE. -1 ) .AND. ( met(8,n+2) .NE. -1 ) ) then
! direct C losses
labile_loss = POOLS(n+1,1) * pars(32)
foliar_loss = max(0.,(met(8,n) * LMA) - labile_loss)
roots_loss = 0 ! POOLS(n+1,3) * roots_frac_death
! fraction of harvest wasted
labile_residue = labile_loss * labile_frac_res
foliar_residue = foliar_loss * foliage_frac_res
! extracted C via grazing: if remaining AGB > pre-grazing limit DM & grazed biomass > pars(34) g.C.m-2
if ( (((POOLS(n+1,2)+POOLS(n+1,1))-foliar_loss-labile_loss) .GE. (pars(27)*0.0475)) &
.AND. ((foliar_loss+labile_loss) .GE. pars(34)) ) then
! extracted C via grazing
REMOVED_C(1,n) = (labile_loss-labile_residue) + (foliar_loss-foliar_residue)
! constants used for animal C fluxes from Vertes.et.al.2019 (10.1016/B978-0-12-811050-8.00002-9)
! animal manure-C production
FLUXES(n,19) = REMOVED_C(1,n) * 0.32
! animal respiration CO2-C
FLUXES(n,20) = REMOVED_C(1,n) * 0.54
! animal CH4-C
FLUXES(n,21) = REMOVED_C(1,n) * 0.04
! update pools
POOLS(n+1,1) = max(0.,POOLS(n+1,1)-labile_loss)
POOLS(n+1,2) = max(0.,POOLS(n+1,2)-foliar_loss)
POOLS(n+1,3) = max(0.,POOLS(n+1,3)-roots_loss)
POOLS(n+1,4) = 0.0
POOLS(n+1,5) = max(0., POOLS(n+1,5) + (labile_residue+foliar_residue+roots_loss) + FLUXES(n,19))
POOLS(n+1,6) = max(0., POOLS(n+1,6))
endif
! extracted C via grazing: if not done above & postgraze AGB < pre-grazing AGB
if ( (REMOVED_C(1,n) .EQ. 0.0) .AND. &
(((POOLS(n+1,2)+POOLS(n+1,1))-foliar_loss-labile_loss) .LE. (pars(27)*0.0475)) ) then
! direct C losses
labile_loss = POOLS(n+1,1) * pars(32)
foliar_loss = POOLS(n+1,2) - (pars(27)*0.0475 + labile_loss)
roots_loss = 0 ! POOLS(n+1,3) * roots_frac_death
! proceed if simulating this grazing will remove > ~0.5 gCm-2 from AGB
if ((foliar_loss+labile_loss) .GE. pars(34)) then
! fraction of harvest wasted
labile_residue = labile_loss * labile_frac_res
foliar_residue = foliar_loss * foliage_frac_res
! extracted carbon via grazing
REMOVED_C(1,n) = (labile_loss-labile_residue) + (foliar_loss-foliar_residue)
! animal manure-C production
FLUXES(n,19) = REMOVED_C(1,n) * 0.32
! animal respiration CO2-C
FLUXES(n,20) = REMOVED_C(1,n) * 0.54
! animal CH4-C
FLUXES(n,21) = REMOVED_C(1,n) * 0.04
! update pools
POOLS(n+1,1) = max(0.,POOLS(n+1,1)-labile_loss)
POOLS(n+1,2) = max(0.,POOLS(n+1,2)-foliar_loss)
POOLS(n+1,3) = max(0.,POOLS(n+1,3)-roots_loss)
POOLS(n+1,4) = 0.0
POOLS(n+1,5) = max(0., POOLS(n+1,5) + (labile_residue+foliar_residue+roots_loss) + FLUXES(n,19) )
POOLS(n+1,6) = max(0., POOLS(n+1,6))
endif
endif
endif ! end grazing process
endif ! end version_code check
! ------------------------------------------------------------------------------------------------------------- !
! FIELD MODE !
! ------------------------------------------------------------------------------------------------------------- !
! if (version_code .EQ. 2) then
! ! CUTTING (if : AGB > cutting limit & met(8,n) = 100 i.e. cutting code)
! if ( ((POOLS(n+1,2)+POOLS(n+1,1)) .GE. (pars(28)*0.0475)) .AND. (met(8,n) .EQ. 100) ) then
! ! direct C losses
! labile_loss = POOLS(n+1,1) * pars(33)
! foliar_loss = max(0.,POOLS(n+1,2) - (pars(27)*0.0475 + labile_loss))
! roots_loss = 0 ! POOLS(n+1,3) * roots_frac_death
! ! fraction of harvest wasted
! labile_residue = labile_loss * labile_frac_res
! foliar_residue = foliar_loss * foliage_frac_res
! ! extracted carbon via cutting
! REMOVED_C(2,n) = (labile_loss-labile_residue) + (foliar_loss-foliar_residue)
! ! update pools
! POOLS(n+1,1) = max(0.,POOLS(n+1,1)-labile_loss)
! POOLS(n+1,2) = max(0.,POOLS(n+1,2)-foliar_loss)
! POOLS(n+1,3) = max(0.,POOLS(n+1,3)-roots_loss)
! POOLS(n+1,4) = 0.0
! POOLS(n+1,5) = max(0., POOLS(n+1,5) + (labile_residue+foliar_residue+roots_loss))
! POOLS(n+1,6) = max(0., POOLS(n+1,6))
! endif ! end cutting
! ! GRAZING (if LSU.ha-1 > 0 & AGB > limit )
! if ( (met(8,n) > 0.0) .AND. (met(8,n) .NE. 100 ) .AND. ((POOLS(n+1,2)+POOLS(n+1,1)) .GE. (pars(27)*0.0475)) ) then
! ! direct C losses
! labile_loss = POOLS(n+1,1) * pars(32)
! ! Remove demand (g.C.m-2) from foliage : LSU.per.ha * 650 kg_weight * 2.5% * convert_kg.DM.ha-1_to_g.C.m-2
! foliar_loss = max(0.,met(8,n) * 650 * pars(31) * 0.047619 - labile_loss)
! roots_loss = 0 ! POOLS(n+1,3) * roots_frac_death
! ! fraction of harvest wasted
! labile_residue = labile_loss * labile_frac_res
! foliar_residue = foliar_loss * foliage_frac_res
! ! extracted carbon via grazing (if grass remains > grazing limit DM )
! if ( ((POOLS(n+1,2)+POOLS(n+1,1))-foliar_loss-labile_loss) .GE. (pars(27)*0.0475) ) then
! ! extracted carbon via grazing
! REMOVED_C(1,n) = (labile_loss-labile_residue) + (foliar_loss-foliar_residue)
! ! animal manure-C production
! FLUXES(n,19) = REMOVED_C(1,n) * 0.32
! ! animal respiration CO2-C
! FLUXES(n,20) = REMOVED_C(1,n) * 0.54
! ! animal CH4-C
! FLUXES(n,21) = REMOVED_C(1,n) * 0.04
! ! update pools
! POOLS(n+1,1) = max(0.,POOLS(n+1,1)-labile_loss)
! POOLS(n+1,2) = max(0.,POOLS(n+1,2)-foliar_loss)
! POOLS(n+1,3) = max(0.,POOLS(n+1,3)-roots_loss)
! POOLS(n+1,4) = 0.0
! POOLS(n+1,5) = max(0., POOLS(n+1,5) + (labile_residue+foliar_residue+roots_loss) + FLUXES(n,19) )
! POOLS(n+1,6) = max(0., POOLS(n+1,6))
! endif
! ! extracted carbon via grazing (if grass remains < grazing limit DM )
! if ( (REMOVED_C(1,n) .EQ. 0.0) .AND. ((POOLS(n+1,2)+POOLS(n+1,1))-foliar_loss-labile_loss) < (pars(27)*0.0475) ) then
! ! direct C losses
! labile_loss = POOLS(n+1,1) * pars(32)
! foliar_loss = POOLS(n+1,2) - (pars(27)*0.0475 + labile_loss)
! roots_loss = 0 ! POOLS(n+1,3) * roots_frac_death
! if (foliar_loss > 0.1 ) then
! ! fraction of harvest wasted
! labile_residue = labile_loss * labile_frac_res
! foliar_residue = foliar_loss * foliage_frac_res
! ! extracted carbon via grazing
! REMOVED_C(1,n) = (labile_loss-labile_residue) + (foliar_loss-foliar_residue)
! ! animal manure-C production
! FLUXES(n,19) = REMOVED_C(1,n) * 0.32
! ! animal respiration CO2-C
! FLUXES(n,20) = REMOVED_C(1,n) * 0.54
! ! animal CH4-C
! FLUXES(n,21) = REMOVED_C(1,n) * 0.04
! ! update pools
! POOLS(n+1,1) = max(0.,POOLS(n+1,1)-labile_loss)
! POOLS(n+1,2) = max(0.,POOLS(n+1,2)-foliar_loss)
! POOLS(n+1,3) = max(0.,POOLS(n+1,3)-roots_loss)
! POOLS(n+1,4) = 0.0
! POOLS(n+1,5) = max(0., POOLS(n+1,5) + (labile_residue+foliar_residue+roots_loss) + FLUXES(n,19) )
! POOLS(n+1,6) = max(0., POOLS(n+1,6))
! endif
! endif
! endif ! end grazing process
! endif ! end version_code check
end do ! nodays loop
end subroutine CARBON_MODEL
!
!------------------------------------------------------------------
!
double precision function acm(drivers,constants)
! the Aggregated Canopy Model, is a Gross Primary Productivity (i.e.
! Photosyntheis) emulator which operates at a daily time step. ACM can be
! paramaterised to provide reasonable results for most ecosystems.
implicit none
! declare input variables
double precision, intent(in) :: drivers(12) & ! acm input requirements
,constants(10) ! ACM parameters
! declare local variables
double precision :: gc, pn, pd, pp, qq, ci, e0, dayl, cps, dec, nit &
,trange, sinld, cosld,aob &
,mint,maxt,radiation,co2,lai,doy,lat &
,deltaWP,Rtot,NUE,temp_exponent,dayl_coef &
,dayl_const,hydraulic_exponent,hydraulic_temp_coef &
,co2_comp_point,co2_half_sat,lai_coef,lai_const
! initial values
gc=0.0 ; pp=0.0 ; qq=0.0 ; ci=0.0 ; e0=0.0 ; dayl=0.0 ; cps=0.0 ; dec=0.0 ; nit=1.0
! load driver values to correct local vars
lai = drivers(1)
maxt = drivers(2)
mint = drivers(3)
nit = drivers(4)
co2 = drivers(5)
doy = drivers(6)
lat = drivers(7)
radiation = drivers(8)
deltaWP = drivers(9)
Rtot = drivers(10)
! load parameters into correct local vars
NUE = constants(1)
dayl_coef = constants(2)
co2_comp_point = constants(3)
co2_half_sat = constants(4)
dayl_const = constants(5)
hydraulic_temp_coef = constants(6)
lai_coef = constants(7)
temp_exponent = constants(8)
lai_const = constants(9)
hydraulic_exponent = constants(10)
! determine temperature range
trange = 0.5*(maxt-mint)
! daily canopy conductance, of CO2 or H2O?
gc = abs(deltaWP)**(hydraulic_exponent)/((hydraulic_temp_coef*Rtot+trange))
! maximum rate of temperature and nitrogen (canopy efficiency) limited photosynthesis (gC.m-2.day-1)
pn = lai*nit*NUE*exp(temp_exponent*maxt)
! pp and qq represent limitation by diffusion and metabolites respecitively
pp = pn/gc
qq = co2_comp_point-co2_half_sat
! calculate internal CO2 concentration (ppm)
ci = 0.5*(co2+qq-pp+sqrt(((co2+qq-pp)*(co2+qq-pp))-4.0*(co2*qq-pp*co2_comp_point)))
! limit maximum quantium efficiency by leaf area, hyperbola
e0 = lai_coef*(lai*lai)/((lai*lai)+lai_const)
! calculate day length (hours)
dec = - asin( sin( 23.45 * deg_to_rad ) * cos( 2.0 * pi * ( doy + 10.0 ) / 365.0 ) )
sinld = sin( lat*deg_to_rad ) * sin( dec )
cosld = cos( lat*deg_to_rad ) * cos( dec )
aob = max(-1.0,min(1.0,sinld / cosld))
dayl = 12.0 * ( 1.0 + 2.0 * asin( aob ) / pi )
! calculate CO2 limited rate of photosynthesis
pd=gc*(co2-ci)
! calculate combined light and CO2 limited photosynthesis
cps=e0*radiation*pd/(e0*radiation+pd)
! correct for day length variation
acm=cps*(dayl_coef*dayl+dayl_const)
return
end function acm
!
!------------------------------------------------------------------
!
double precision function linear_model_gradient(x,y,interval)
! Function to calculate the gradient of a linear model for a given depentent
! variable (y) based on predictive variable (x). The typical use of this
! function will in fact be to assume that x is time.
implicit none
! declare input variables
integer :: interval
double precision, dimension(interval) :: x,y
! declare local variables
double precision :: sum_x, sum_y, sumsq_x,sum_product_xy
! calculate the sum of x
sum_x = sum(x)
! calculate the sum of y
sum_y = sum(y)
! calculate the sum of squares of x
sumsq_x = sum(x*x)
! calculate the sum of the product of xy
sum_product_xy = sum(x*y)
! calculate the gradient
linear_model_gradient = ( (interval*sum_product_xy) - (sum_x*sum_y) ) &
/ ( (interval*sumsq_x) - (sum_x*sum_x) )
return
end function linear_model_gradient
!
!--------------------------------------------------------------------
!
end module CARBON_MODEl_MOD