-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_deep.py
263 lines (208 loc) · 9.81 KB
/
mnist_deep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A deep MNIST classifier using convolutional layers.
See extensive documentation at
https://www.tensorflow.org/get_started/mnist/pros
"""
# Disable linter warnings to maintain consistency with tutorial.
# pylint: disable=invalid-name
# pylint: disable=g-bad-import-order
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import time
import os
import sys
import math
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
from collections import namedtuple
from datetime import datetime
import tools.storeincsv as incsv
FLAGS = None
ParamHeader = ['Timestamp', 'Script', 'Info', 'Batch_size', 'Num_steps', 'TestAccuracy', 'TotalTime', 'TestTime', 'TrainTime', 'MeanPerBatch', 'StDev']
ParamEntry = namedtuple('ParamEntry', ParamHeader)
def deepnn(x):
"""deepnn builds the graph for a deep net for classifying digits.
Args:
x: an input tensor with the dimensions (N_examples, 784), where 784 is the
number of pixels in a standard MNIST image.
Returns:
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
equal to the logits of classifying the digit into one of 10 classes (the
digits 0-9). keep_prob is a scalar placeholder for the probability of
dropout.
"""
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
def conv2d(x, W):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
"""max_pool_2x2 downsamples a feature map by 2X."""
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(_):
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
param_entries = []
param_entries.append(ParamHeader)
check_step = 1000
mnist_batchsize = 50
mnist_steps = 20000
num_steps_burn_in = 10
if FLAGS.with_profiling :
mnist_steps = 2
num_steps_burn_in = 0
print("=> Profiling is enabled!")
if FLAGS.mnist_batch > -1:
mnist_batchsize = FLAGS.mnist_batch
if FLAGS.mnist_steps > -1:
mnist_steps = FLAGS.mnist_steps
print("mnist_steps: ", mnist_steps)
print("Ready for training, start time counting")
# start time
start = time.time()
train_duration = 0.0
train_duration_squared = 0.0
check_duration = 0.0
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = FLAGS.gpu_fraction
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
batch0 = mnist.train.next_batch(mnist_batchsize) # for burn_in we can use a fixed batch
for i in range(mnist_steps + num_steps_burn_in):
if (i == num_steps_burn_in):
burn_in_end = time.time()
tcheck_prev = burn_in_end
batch = mnist.train.next_batch(mnist_batchsize) if (i >= num_steps_burn_in) else batch0
if (i >= num_steps_burn_in) and (i - num_steps_burn_in) % check_step == 0 :
tcheck = time.time()
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
dtcheck = tcheck - tcheck_prev
nbatches = check_step if (i - num_steps_burn_in) > 0 else 0
t1batch = dtcheck/float(nbatches) if nbatches > 0 else 0
print('step {0:6d}, training accuracy {1:5.3f} ({2:5d} batches trained in {3:6.4f} s, i.e. {4:9.07f} s/batch)'
.format(i - num_steps_burn_in, train_accuracy, nbatches, dtcheck, t1batch))
tcheck_prev = time.time()
check_duration += (time.time() - tcheck)
start_train = time.time() # measure training time per batch
if FLAGS.with_profiling:
run_metadata = tf.RunMetadata()
train_step_ = sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5},
options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=run_metadata)
else:
train_step_ = sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
duration = time.time() - start_train # measure training time per batch
if (i >= num_steps_burn_in):
train_duration += duration
train_duration_squared += duration * duration
start_test = time.time()
param_accuracy = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
test_duration = time.time() - start_test
total_runtime = time.time() - burn_in_end
mn = train_duration / mnist_steps
vr = train_duration_squared / mnist_steps - mn * mn
sd = math.sqrt(vr)
print('test accuracy %g' % param_accuracy)
print('run in %g s, test: %g s, checks: %g s, train: %g s, burn_in: %g s' %
(total_runtime, test_duration, check_duration, train_duration, burn_in_end - start))
print('mean per batch %g +/- %g s' % (mn, sd))
param_entries.append(ParamEntry(
datetime.now(), os.path.basename(__file__),
"", mnist_batchsize, mnist_steps, param_accuracy,
total_runtime, test_duration, train_duration, mn, sd))
# Dump profiling data (*)
if FLAGS.with_profiling:
ProfileOptionBuilder = tf.profiler.ProfileOptionBuilder
opts = ProfileOptionBuilder(ProfileOptionBuilder.time_and_memory()).with_node_names().build()
tf.profiler.profile(tf.get_default_graph(),
run_meta=run_metadata,
cmd='code',
options=opts)
# prof_timeline = tf.python.client.timeline.Timeline(run_metadata.step_stats)
# prof_ctf = prof_timeline.generate_chrome_trace_format()
# with open('./prof_ctf.json', 'w') as fp:
# print("Dumped to prof_ctf.json")
# fp.write(prof_ctf)
if FLAGS.csv_file:
incsv.store_data_in_csv(FLAGS.csv_file, param_entries)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str,
default='/tmp/tensorflow/mnist/input_data',
help='Directory for storing input data')
parser.add_argument("--mnist_batch", type=int, default=-1,
help="Batch size")
parser.add_argument("--mnist_steps", type=int, default=-1,
help="Number of steps to train")
parser.add_argument("--gpu_fraction", type=float, default=0.9,
help="GPU Memory fraction to use 0..1. Default is 0.9.")
parser.add_argument("--with_profiling", nargs='?', const=True, type=bool, default=False,
help="(experimental) Enable profiling. If --mnist_steps is not specified, only 2 epochs are processed!")
parser.add_argument('--csv_file', type=str,
default='',
help='File (.csv) to output script results. If no file is passed in, csv file will not be created.')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)