forked from gremau/NMEG_FluxProc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUNM_Ameriflux_prepare_soil_met.m
788 lines (655 loc) · 31.4 KB
/
UNM_Ameriflux_prepare_soil_met.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
function ds_out = UNM_Ameriflux_prepare_soil_met( sitecode, year, ...
data, ds_qc )
% UNM_AMERIFLUX_PREPARE_SOIL_MET -
%
% contains the section of UNM_Ameriflux_file_maker.m as of 15 Aug 2011 that
% gathers/calculates all the soil met properties. By modularizing it here it
% should make it easier to streamline this going into the future. I have gone
% through and replaced QC columns with ds_qc -- the dataset created by
% fluxallqc_2_dataset.m. Abbreviations: SWC: soil water content; VWC:
% volumetric water content.
%
% Extracts variables from inut argument data whose names match one of:
% soilT_COVER_NUMBER_DEPTH
% SHF*, soil_heat_flux*, shf*
% cs616SWC_COVER_NUMBER_DEPTH
%
% USAGE
% ds_out = UNM_Ameriflux_prepare_soil_met( sitecode, year, data, precip );
%
% INPUTS:
% sitecode: UNM_sites object; specifies the site
% year: four-digit year: specifies the year
% data: dataset array; parsed fluxall data. Generally will be the output
% of UNM_parse_fluxall_txt_file or UNM_parse_fluxall_xls_file
% ds_qc: dataset array; parsed qc file data. Generally will be the output
% of UNM_parse_QC_txt_file
%
% OUTPUTS
% ds_out: dataset array: soil variables extracted from data
%
% SEE ALSO
% dataset, UNM_parse_fluxall_txt_file, UNM_parse_fluxall_xls_file
%
% author: Timothy W. Hilton, UNM, January 2012
warning('deprecated - this is being replaced by "soil_met_correct.m"');
[ last_obs_row_data, ~, ~ ] = find( not( isnan( double( data( :, 2:end ) ) ) ) );
[ last_obs_row_qc, ~, ~ ] = find( not( isnan( double( ds_qc( :, 2:end ) ) ) ) );
last_obs_row = max( [ reshape( last_obs_row_data, 1, [] ), ...
reshape( last_obs_row_qc, 1, [] ) ] );
sitecode = UNM_sites( sitecode );
SWC_smoothed = false; % will set to true after SWC data have been smoothed
t0 = now();
fprintf( 1, 'Begin soil met properties...\n' );
% some site-years have non-descriptive labels for soil data columns. Replace
% these with descriptive labels.
data = UNM_assign_soil_data_labels( sitecode, year, data );
% create a column of -9999s to place in the dataset where a site does not
% record a particular variable
dummy = repmat( -9999, size( data, 1 ), 1 );
% find any soil heat flux columns within QC data
shf_vars = regexp_header_vars( data, '(SHF|soil_heat_flux|shf).*' );
SHF = [];
n_shf_vars = numel( shf_vars ); % how many SHF columns are there?
% -----
% get soil water content and soil temperature data
% -----
switch sitecode
case { UNM_sites.GLand, UNM_sites.SLand, UNM_sites.JSav, ...
UNM_sites.TX, UNM_sites.TX_forest, UNM_sites.TX_grass, ...
UNM_sites.New_GLand }
% all sites except PJ and PJ_girdle store their soil data in the
% FluxAll file
% pull soil water content (SWC), soil temperature (T), and TCAV soil T
% measurements out of the FluxAll data.
% get the soil water content and soil T columns and labels
re_Tsoil = '[Ss]oilT_[A-Za-z]+_[0-9]+_[0-9]+.*'; %regexp to identify
%"soilT_COVER_NUMBER_DEPTH"
Tsoil = data( :, regexp_header_vars( data, re_Tsoil ) );
if isempty( Tsoil )
re_Tsoil_form2 = 'Tsoil_avg';
Tsoil = data( :, regexp_header_vars( data, re_Tsoil_form2 ) );
end
if ( sitecode == UNM_sites.JSav ) & ( year == 2008 )
% Jsav 2008 has more Tsoil observations than SWC observations.
% Remove the observations that don't correspond to a SWC observation.
Tsoil = JSav_match_soilT_SWC( Tsoil );
end
fprintf( 'Tsoil probes detected: %d\n', size( Tsoil, 2 ) );
cs616_pd = data( :, regexp_header_vars( data, ...
'cs616SWC_[A-Za-z]+_[0-9]+_[0-9]+.*' ) );
t0 = now();
cs616_pd_smoothed = UNM_soil_data_smoother( cs616_pd, 6, false );
SWC_smoothed = true;
fprintf( 'smooth cs616: %0.2f mins\n', ( now() - t0 ) * 24 * 60 );
if ( sitecode == UNM_sites.GLand ) & ( year == 2011 )
% GLand SWC probes were reinstalled on 22 Mar 2011, introducing an
% artificial discontinuity in most of the probes. Correct that by
% raising signal after 22 Mar to its pre-22 Mar level.
draw_plots = false; % set to true to see the corrections
cs616_pd_smoothed = GLand_2011_correct_22Mar( cs616_pd_smoothed, ...
draw_plots );
end
if ( sitecode == UNM_sites.JSav ) & ( year == 2009 )
cs616_pd = data( :, regexp_header_vars( data, ...
'cs616SWC_[A-Za-z]+_[0-9]+_[0-9]+.*' ) );
t0 = now();
cs616_pd_smoothed = UNM_soil_data_smoother( cs616_pd, 6, false );
SWC_smoothed = true;
fprintf( 'smooth cs616: %0.2f mins\n', ( now() - t0 ) * 24 * 60 );
end
if ( sitecode == UNM_sites.JSav ) & ( year == 2012 )
draw_plots = false; % set to true to see the corrections
cs616_pd_smoothed = ...
JSav_2012_datalogger_transition( cs616_pd, ...
6, ...
draw_plots );
end
% if necessary, convert CS616 periods to volumetric water content
[ cs616_smoothed, ...
cs616_Tc_smoothed ] = cs616_period2vwc( cs616_pd_smoothed, ...
Tsoil, ...
'draw_plots', false, ...
'save_plots', false, ...
'sitecode', sitecode, ...
'year', year );
% t0 = now();
% cs616_Tc_smoothed = UNM_soil_data_smoother( cs616_Tc, 6, false );
% fprintf( 'smooth T-corrected SWC: %0.2f mins\n', ( now() - t0 ) * 24 * 60 );
if ( year == 2011 ) & sitecode == ( UNM_sites.SLand )
cs616_Tc_smoothed = fix_2011_SLand_SWC( cs616_Tc_smoothed );
end
TCAV = data( :, regexp_header_vars( data, ...
'TCAV_[A-Za-z]+.*' ) );
case { UNM_sites.PPine }
cs616 = preprocess_PPine_soil_data( year );
two_mins = 2;
[ ~, cs616 ] = merge_datasets_by_datenum( data, cs616, ...
'timestamp', 'timestamp', ...
two_mins, ...
min( data.timestamp ), ...
max( data.timestamp ) );
% cs616 = cs616( find_unique( cs616.timestamp ), : );
cs616.timestamp = [];
cs616_Tc = cs616; % PPine SWC data are already in VWC form
re_Tsoil = 'soilT.*';
Tsoil = data( :, regexp_header_vars( data, re_Tsoil ) );
TCAV = data( :, regexp_header_vars( data, ...
'TCAV_[A-Za-z]+.*' ) );
case { UNM_sites.MCon }
cs616 = preprocess_MCon_soil_data( year, data.timestamp );
cs616.timestamp = [];
cs616_Tc = cs616; % MCon SWC data are already in VWC form
re_Tsoil = 'soilT.*';
Tsoil = data( :, regexp_header_vars( data, re_Tsoil ) );
TCAV = data( :, regexp_header_vars( data, ...
'TCAV_[A-Za-z]+.*' ) );
case { UNM_sites.PJ, UNM_sites.PJ_girdle, UNM_sites.TestSite }
% PJ and PJ_girdle store their soil data outside of FluxAll.
% These data are already converted to VWC.
[ Tsoil, cs616, SHF ] = preprocess_PJ_soil_data( sitecode, year );
% preprocess_PJ_soil_data( sitecode, ...
% year, ...
% 't_min', min( data.timestamp ), ...
% 't_max', max( data.timestamp ) );
if any( ( Tsoil.tstamps - data.timestamp ) > 1e-10 )
error( 'soil data timestamps do not match fluxall timestamps' );
end
Tsoil.tstamps = [];
cs616.tstamps = [];
SHF.tstamps = [];
cs616_Tc = cs616; %replacedata( cs616, repmat( NaN, size( cs616 ) ) );
TCAV = [];
end
switch sitecode
case UNM_sites.SLand
switch year
case 2009
temp = double( Tsoil );
temp( 1:DOYidx( 201.5 ), : ) = NaN;
Tsoil = replacedata( Tsoil, temp );
end
end
% these sensors have problems with electrical noise -- remove noisy points
Tsoil_smoothed = UNM_soil_data_smoother( Tsoil, 12, false );
if not( SWC_smoothed )
fprintf( 'smoothing soil water\n' );
cs616_Tc_smoothed = UNM_soil_data_smoother( cs616_Tc, 12, false );
end
draw_plots = false;
Tsoil_smoothed = fill_soil_temperature_gaps( Tsoil_smoothed, ...
ds_qc.precip, ...
draw_plots );
cs616_Tc_smoothed = fill_soil_water_gaps( cs616_Tc_smoothed, ...
ds_qc.precip, ...
draw_plots );
% remove data from specific periods at specific probes that are obviously bogus
[ Tsoil_smoothed, cs616_Tc_smoothed ] = ...
remove_problematic_soil_probe_data( sitecode, ...
year, ...
Tsoil_smoothed, ...
cs616_Tc_smoothed );
% calculate averages by cover type, depth
[ Tsoil_cover_depth_avg, ...
Tsoil_cover_avg, ...
Tsoil_depth_avg ] = soil_data_averager( Tsoil_smoothed, ...
'draw_plots', false, ...
'fill_type', 'interp' );
[ VWC_cover_depth_avg, ...
VWC_cover_avg, ...
VWC_depth_avg ] = soil_data_averager( cs616_Tc_smoothed, ...
'draw_plots', false, ...
'fill_type', 'interp' );
if ( sitecode == UNM_sites.GLand ) & ( year == 2011 )
[ VWC_depth_avg, VWC_cover_depth_avg ] = ...
fill_JunJul_2011_GLand_SWC_gap( VWC_depth_avg, VWC_cover_depth_avg );
end
if not( isempty( TCAV ) )
soil_surface_T = TCAV;
else
soil_surface_T = Tsoil_cover_avg;
end
if sitecode == UNM_sites.JSav
soil_surface_T = Tsoil_cover_avg;
end
% if there's only one soil temp measurement, use it for all SWC measurements
if size( soil_surface_T, 2 ) == 1
soil_surface_T = ...
repmat( soil_surface_T, 1, size( VWC_cover_avg, 2 ) );
% give the replicated T values descriptive names
soil_surface_T.Properties.VarNames = ...
regexprep( VWC_cover_avg.Properties.VarNames, ...
'VWC', ...
'soilT' );
end
fprintf( 'second smoothing pass\n' );
Tsoil_smoothed = UNM_soil_data_smoother( Tsoil_smoothed, 12, false );
cs616_Tc_smoothed = UNM_soil_data_smoother( cs616_Tc_smoothed, 12, false );
% -----
% -----
% now we have T-corrected VWC and soil T. Calculate heat flux with storage.
% -----
% -----
SHF_pars = define_SHF_pars( sitecode, year );
if not( ismember( sitecode, [ UNM_sites.PJ, UNM_sites.PJ_girdle, UNM_sites.TestSite ] ) )
SHF = data( :, shf_vars );
shf_vars = cellfun( @(x) [ x, '_0' ], shf_vars, 'UniformOutput', false );
SHF.Properties.VarNames = shf_vars;
end
if not( isempty( SHF ) )
[ SHF_cover_depth_avg, ...
SHF_cover_avg, ...
SHF_depth_avg ] = soil_data_averager( SHF, ...
'draw_plots', false, ...
'fill_type', 'interp' );
else
SHF_cover_depth_avg = [];
SHF_cover_avg = [];
SHF_depth_avg = [];
end
switch sitecode
case UNM_sites.SLand
% do not calculate SHF with storage at the "grass" pits -- we don't have
% SWC and soil T observations for SLand grass, and there isn't much grass
% there anyway (as per conversation with Marcy 6 Aug 2012).
[ ~, SHF_grass_idx ] = regexp_header_vars( SHF_cover_avg, 'grass' );
SHF_cover_avg( :, SHF_grass_idx ) = [];
case UNM_sites.JSav
if year >= 2009
% similarly, ignore "edge" pits at JSav
[ ~, JSav_edge_idx ] = regexp_header_vars( SHF_cover_avg, 'edge' );
SHF_cover_avg( :, JSav_edge_idx ) = [];
end
case UNM_sites.MCon
% here there is only one soil heat flux plate, so use the average T and
% VWC of all soil covers for calculating storage
VWC_cover_avg_out = VWC_cover_avg;...
VWC_cover_avg = dataset( { nanmean( double( VWC_cover_avg ), 2 ), ...
'VWC_mcon_1' } );
soil_surface_T = dataset( { nanmean( double( soil_surface_T ), 2 ), ...
'soilT_mcon_1' } );
end
% %----- soil data for Matt -- remove this later -----
% soil_data_for_matt = horzcat( Tsoil_runmean, cs616_runmean );
% fname = fullfile( getenv( 'FLUXROOT' ), 'FluxOut', 'SoilForMatt', ...
% sprintf( '%s_%d_soil.mat', char( sitecode ), year ) );
% fprintf( 'saving %s\n', fname );
% save( fname, 'soil_data_for_matt' );
% %----- soil data for Matt -- remove this later -----
if not( isempty( SHF_cover_avg ) )
SHF = calculate_heat_flux( soil_surface_T, ...
VWC_cover_avg, ...
SHF_pars, ...
SHF_cover_avg, ...
1.0 );
else
SHF = dataset( { repmat( NaN, size( data, 1 ), 1 ), ...
sprintf( 'SHF_%s', char( sitecode ) ) } );
end
%======================================================================
% assign all the variables created above to a dataset to be returned to
% the caller
%======================================================================
switch sitecode
case UNM_sites.MCon
VWC_cover_avg = VWC_cover_avg_out;
end
% create output dataset with attention to any duplicated data names
out_names = genvarname( [ Tsoil_smoothed.Properties.VarNames, ...
Tsoil_depth_avg.Properties.VarNames, ...
Tsoil_cover_depth_avg.Properties.VarNames, ...
cs616_Tc_smoothed.Properties.VarNames, ...
VWC_depth_avg.Properties.VarNames, ...
VWC_cover_depth_avg.Properties.VarNames, ...
SHF.Properties.VarNames ] );
out_data = [ double( Tsoil_smoothed ), ...
double( Tsoil_depth_avg ), ...
double( Tsoil_cover_depth_avg ), ...
double( cs616_Tc_smoothed ), ...
double( VWC_depth_avg ), ...
double( VWC_cover_depth_avg ), ...
double( SHF ) ];
% out_names = genvarname( [ cs616_Tc_smoothed.Properties.VarNames, ...
% VWC_depth_avg.Properties.VarNames, ...
% VWC_cover_depth_avg.Properties.VarNames, ...
% SHF.Properties.VarNames ] );
% out_data = [ double( cs616_Tc_smoothed ), ...
% double( VWC_depth_avg ), ...
% double( VWC_cover_depth_avg ), ...
% double( SHF ) ];
% the soil data smoothing/averaging routine is setup to fill constant values
% past the last valid observation in cases where there is a gap at the end of
% the record, and there is no precipitation during that gap. However, we
% don't want to fill past the end of the most recent data collected from the
% field (or, worse, into the future!). So, make sure the soil data contain
% only NaNs after the end of the most recent set of observations.
out_data( (last_obs_row + 1) : end, : ) = NaN;
ds_out = dataset( { out_data, out_names{ : } } );
% add timestamp columns
[ YEAR, ~, ~, ~, ~, ~ ] = datevec( data.timestamp );
DTIME = data.timestamp - datenum( YEAR, 1, 0, 0, 0, 0 );
DOY = floor( DTIME );
HRMIN = str2num( datestr( data.timestamp, 'HHMM' ) );
ds_out = [ dataset( YEAR, DOY, HRMIN, DTIME ), ds_out ];
% calculate execution time and write status message
t_tot = ( now() - t0 ) * 24 * 60 * 60;
fprintf( 1, ' Done (%.0f secs)\n', t_tot );
%----------------------------------------------------------------------
%----------------------------------------------------------------------
% helper functions start here
%----------------------------------------------------------------------
%----------------------------------------------------------------------
function [ ds ] = soildata_2_dataset(fluxall, columns, labels)
% SOILDATA_2_DATASET - pulls soil data from parsed Fluxall data into matlab
% dataset. Helper function for UNM_Ameriflux_prepare_soil_met.
%
% '.' is not a legal character for matlab variable names -- replace '.' in depth
% labels (now in format e.g. 12.5) with p (e.g. 12p5)
varnames = regexprep( labels, '([0-9])\.([0-9])', '$1p$2' );
ds = dataset( { fluxall( : ,columns ), varnames{ : } } );
%----------------------------------------------------------------------
function SHF_pars = define_SHF_pars( sitecode, year )
% DEFINE_SHF_PARS - specifies parameters for calculating soil heat flux.
% Helper function for UNM_Ameriflux_prepare_soil_met
%
% author: Timothy W. Hilton, UNM, April 2012
% set parameter values for soil heat flux
% scap and wcap do not vary among sites
SHF_pars.scap = 837;
SHF_pars.wcap = 4.19e6;
SHF_pars.depth = 0.05;
switch sitecode
% bulk and depth vary across site-year
case UNM_sites.GLand
SHF_pars.bulk = 1398;
case UNM_sites.SLand
SHF_pars.bulk=1327;
case UNM_sites.JSav
SHF_pars.bulk=1720;
case UNM_sites.PJ | UNM_sites.TestSite
SHF_pars.bulk=1437;
case UNM_sites.PPine
warning( 'check PPine SHF parameters' );
SHF_pars.bulk = 1071;
case UNM_sites.MCon
warning( 'check MCon SHF parameters' );
SHF_pars.bulk = 1071;
case UNM_sites.TX
SHF_pars.bulk = 1114;
case UNM_sites.TX_forest
warning( 'check TX_forest SHF parameters -- bulk is currently NaN' );
SHF_pars.bulk = NaN;
case UNM_sites.TX_grass
warning( 'check TX_grass SHF parameters -- bulk is currently NaN' );
SHF_pars.bulk = NaN;
case UNM_sites.PJ_girdle
SHF_pars.bulk = NaN;
SHF_pars.bulk=1437;
warning( ['check PJ_girdle SHF parameters -- bulk is currently set to PJ ' ...
'value (1437)'] );
case UNM_sites.New_GLand
SHF_pars.bulk = 1398;
end %switch sitecode -- soil heat flux parameters
%----------------------------------------------------------------------
% Jsav 2008 has more Tsoil observations than SWC observations. Remove the
% observations that don't correspond to a SWC observation.
function Tsoil = JSav_match_soilT_SWC( Tsoil )
[ ~, discard_idx ] = regexp_header_vars( Tsoil, '62' );
Tsoil( :, discard_idx ) = [];
%--------------------------------------------------
function swc_smooth = JSav_2012_datalogger_transition( swc_raw, win, draw_plots )
% JSAV_2012_DATALOGGER_TRANSITION - The JSav soil water content probes were
% moved to a CR1000 datalogger on 1 May 2012. After the switch the datalogger
% recorded volumetric water content, not cs616 period in microseconds as
% before the switch. Smoothing the data across that transition messes things
% up, so smooth the two halves of the record separately here
may1 = datenum( 2012, 5, 1 ) - datenum( 2012, 1, 0 );
may1 = DOYidx( may1 );
swc_smooth1 = UNM_soil_data_smoother( swc_raw( 1:may1-1, : ), win, draw_plots );
swc_smooth2 = UNM_soil_data_smoother( swc_raw( may1:end, : ), win, draw_plots );
swc_smooth = vertcat( swc_smooth1, swc_smooth2 );
%--------------------------------------------------
function VWC = GLand_2011_correct_22Mar( VWC, draw_plots )
% GLAND_2011_CORRECT_22MAR - GLand SWC probes were reinstalled on 22 Mar 2011,
% introducing an artificial discontinuity in most of the probes. Correct that
% by raising signal after 22 Mar to its pre-22 Mar level.
%
if draw_plots
figure();
plot( VWC, '.-' );
xlim( [ 3800, 4000 ] );
ylim( [ 0, 0.1 ] );
ylabel( 'VWC (m^3 m^{-3})');
xlabel( '30-minute array index' );
title( 'before' );
end
% index for 14 Jun 00:00
jun_14 = DOYidx( datenum( 2011, 6, 14 ) - datenum( 2011, 1, 0 ) );
delta_22mar = ( nanmean( double( VWC( 3812:3912, : ) ) ) - ...
nanmean( double( VWC( 3920:4020, : ) ) ) );
% shift the post-22 Mar data to make them continuous with the pre-22 Mar data
temp = double( VWC( 3920 : jun_14, : ) );
temp = temp + repmat( delta_22mar, size( temp, 1 ), 1 );
VWC( 3920 : jun_14, : ) = ...
replacedata( VWC( 3920 : jun_14, : ), temp );
% remove and fill by interpolation two periods of two and four hours,
% respectively, where all the probes were going haywire
temp = double( VWC( 1 : 4000, : ) );
temp( 3912:3920, : ) = NaN;
temp( 3815:3820, : ) = NaN;
temp = column_inpaint_nans( temp, 4 );
VWC( 1:4000, : ) = ...
replacedata( VWC( 1:4000, : ), temp );
if draw_plots
figure();
plot( VWC, '.-' );
xlim( [ 3800, 4000 ] );
ylim( [ 0, 0.1 ] );
ylabel( 'VWC (m^3 m^{-3})');
xlabel( '30-minute array index' );
title( 'after' );
end
%--------------------------------------------------
function [ VWC_depth_avg, VWC_cover_depth_avg ] = ...
fill_JunJul_2011_GLand_SWC_gap( VWC_depth_avg, VWC_cover_depth_avg )
% FILL_JUNJUL_2011G_LAND_SWC_GAP - there was a datalogger malfunction at GLand
% from 13 June to 27 July 2011 that resulted in the loss of all data. Here
% we fill the cover--depth average volumetric water content using the same
% averages from New_GLand.
varnames = { 'VWC_grass_2p5cm_Avg', 'VWC_grass_12p5cm_Avg', ...
'VWC_grass_22p5cm_Avg', 'VWC_grass_37p5cm_Avg', ...
'VWC_grass_52p5cm_Avg', ...
'VWC_open_2p5cm_Avg', 'VWC_open_12p5cm_Avg', ...
'VWC_open_22p5cm_Avg', 'VWC_open_37p5cm_Avg' };
VWC = VWC_cover_depth_avg;
temp = double( VWC( 7401:10201, varnames ) );
temp(:) = NaN;
VWC( 7401:10201, varnames ) = replacedata( VWC( 7401:10201, varnames ), temp );
%-----
% grass pit adjustments
% grass 2.5cm
VWC.VWC_grass_2p5cm_Avg( 8670 ) = VWC.VWC_grass_2p5cm_Avg( 7400 );
VWC.VWC_grass_2p5cm_Avg( 8676 ) = VWC.VWC_grass_2p5cm_Avg( 8670 ) + 0.025;
VWC.VWC_grass_2p5cm_Avg( 8880 ) = VWC.VWC_grass_2p5cm_Avg( 8670 ) + 0.024;
VWC.VWC_grass_2p5cm_Avg( 9198 ) = VWC.VWC_grass_2p5cm_Avg( 8670 ) + 0.007;
VWC.VWC_grass_2p5cm_Avg( 9300 ) = VWC.VWC_grass_2p5cm_Avg( 8670 ) + 0.014;
VWC.VWC_grass_2p5cm_Avg( 10000 ) = VWC.VWC_grass_2p5cm_Avg( 8670 ) + 0.0075;
% grass 12.5 cm
VWC.VWC_grass_12p5cm_Avg( 8670 ) = VWC.VWC_grass_12p5cm_Avg( 7400 ) - 0.003;
VWC.VWC_grass_12p5cm_Avg( 8920 ) = VWC.VWC_grass_12p5cm_Avg( 8670 ) + 0.004;
VWC.VWC_grass_12p5cm_Avg( 10190 ) = VWC.VWC_grass_12p5cm_Avg( 8670 ) - 0.002;
% grass 22.5 cm
VWC.VWC_grass_22p5cm_Avg( 8700 ) = VWC.VWC_grass_22p5cm_Avg( 7395 ) - 0.01;
VWC.VWC_grass_22p5cm_Avg( 9500 ) = VWC.VWC_grass_22p5cm_Avg( 8700 ) + 0.001;
VWC.VWC_grass_22p5cm_Avg( 10200 ) = VWC.VWC_grass_22p5cm_Avg( 7395 ) - 0.015;
% grass 37.5 cm
VWC.VWC_grass_37p5cm_Avg( 8670 ) = VWC.VWC_grass_37p5cm_Avg( 7395 ) - 0.008;
VWC.VWC_grass_37p5cm_Avg( 9100 ) = VWC.VWC_grass_37p5cm_Avg( 8670 ) + 0.001;
VWC.VWC_grass_37p5cm_Avg( 10200 ) = VWC.VWC_grass_37p5cm_Avg( 10300 );
% grass 52.5 cm
%-----
% open pits
% open 2.5 cm
VWC.VWC_open_2p5cm_Avg( 8670 ) = VWC.VWC_open_2p5cm_Avg( 7400 );
VWC.VWC_open_2p5cm_Avg( 8775 ) = VWC.VWC_open_2p5cm_Avg( 8670 ) + 0.0175;
VWC.VWC_open_2p5cm_Avg( 8925 ) = VWC.VWC_open_2p5cm_Avg( 8670 ) + 0.0175;
VWC.VWC_open_2p5cm_Avg( 9200 ) = VWC.VWC_open_2p5cm_Avg( 8670 ) + 0.003;
VWC.VWC_open_2p5cm_Avg( 9300 ) = VWC.VWC_open_2p5cm_Avg( 8670 ) + 0.015;
VWC.VWC_open_2p5cm_Avg( 10000 ) = VWC.VWC_open_2p5cm_Avg( 8670 ) + 0.004;
% open 12.5 cm
VWC.VWC_open_12p5cm_Avg( 8670 ) = VWC.VWC_open_12p5cm_Avg( 7400 ) - 0.002;
VWC.VWC_open_12p5cm_Avg( 9100 ) = VWC.VWC_open_12p5cm_Avg( 8670 ) + 0.009;
VWC.VWC_open_12p5cm_Avg( 10200 ) = VWC.VWC_open_12p5cm_Avg( 8670 );
% open 22.5 cm
VWC.VWC_open_22p5cm_Avg( 8670 ) = VWC.VWC_open_22p5cm_Avg( 7400 ) - 0.008;
VWC.VWC_open_22p5cm_Avg( 9100 ) = VWC.VWC_open_22p5cm_Avg( 7400 );
VWC.VWC_open_22p5cm_Avg( 9600 ) = VWC.VWC_open_22p5cm_Avg( 9100 );
VWC.VWC_open_22p5cm_Avg( 10200 ) = VWC.VWC_open_22p5cm_Avg( 9600 ) - 0.008;
% open 37.5 cm
% linear interpolation of entire gap should be ok here
% open 52.5 cm
New_GLand11 = parse_ameriflux_file( ...
get_ameriflux_filename( UNM_sites.New_GLand, 2011, 'soil' ) );
offset = New_GLand11.VWC_open_520x2E5_Avg( 10000 ) - ...
VWC.VWC_open_52p5cm_Avg( 10000 );
VWC.VWC_open_52p5cm_Avg( 1:10000 ) = ...
New_GLand11.VWC_open_520x2E5_Avg( 1:10000 ) - offset;
% fill the gap by linear interpolation between the inflection points
% specified above
temp = VWC( 7400:10202, varnames );
temp = double( temp );
temp = column_inpaint_nans( temp, 4 );
% replace the gap in the input dataset with the interpolated data
VWC( 7400:10202, varnames ) = ...
replacedata( VWC( 7400:10202, varnames ), temp );
VWC_cover_depth_avg = VWC;
% recalculate the site-wide-by-depth averages with the filled data
VWC_depth_avg( :, 'VWC_2p5cm_Avg' ) = replacedata( ...
VWC_depth_avg( :, 'VWC_2p5cm_Avg' ), ...
mean( [ double( VWC_cover_depth_avg( :, 'VWC_grass_2p5cm_Avg' ) ), ...
double( VWC_cover_depth_avg( :, 'VWC_open_2p5cm_Avg' ) ) ], 2 ) );
VWC_depth_avg( :, 'VWC_12p5cm_Avg' ) = replacedata( ...
VWC_depth_avg( :, 'VWC_12p5cm_Avg' ), ...
mean( [ double( VWC_cover_depth_avg( :, 'VWC_grass_12p5cm_Avg' ) ), ...
double( VWC_cover_depth_avg( :, 'VWC_open_12p5cm_Avg' ) ) ], 2 ) );
VWC_depth_avg( :, 'VWC_37p5cm_Avg' ) = replacedata( ...
VWC_depth_avg( :, 'VWC_37p5cm_Avg' ), ...
mean( [ double( VWC_cover_depth_avg( :, 'VWC_grass_37p5cm_Avg' ) ),...
double( VWC_cover_depth_avg( :, 'VWC_open_37p5cm_Avg' ) ) ], 2 ) );
VWC_depth_avg( :, 'VWC_52p5cm_Avg' ) = replacedata( ...
VWC_depth_avg( :, 'VWC_52p5cm_Avg' ), ...
mean( [ double( VWC_cover_depth_avg( :, 'VWC_grass_52p5cm_Avg' ) ), ...
double( VWC_cover_depth_avg( :, 'VWC_open_52p5cm_Avg' ) ) ], 2 ) );
%--------------------------------------------------
function VWC = fix_2011_SLand_SWC( VWC )
% FIX_2011_SLAND_SWC - there is an obviously-incorrect step change in many of
% the SLand 2011 soil water probes around 22 May, perhaps from a lightnig
% strike or other electrical anomaly. Using GLand and New_GLand as guides,
% here we implement best-approximation fixes to the SWC records for SLand
% 2011.
figure(); h0 = plot( VWC.cs616SWC_open_1_2p5, '.k' );
VWC.cs616SWC_open_1_2p5( 6800:7200 ) = NaN;
idx = 7200:9500;
VWC.cs616SWC_open_1_2p5( idx ) = VWC.cs616SWC_open_1_2p5( idx ) - 0.0125;
hold on; h1 = plot( VWC.cs616SWC_open_1_2p5, '-ob' );
title( 'open\_1\_2.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_1_12p5, '.k' );
VWC.cs616SWC_open_1_12p5( 6800:7200 ) = NaN;
idx = 7200:10063;
VWC.cs616SWC_open_1_12p5( idx ) = VWC.cs616SWC_open_1_12p5( idx ) - 0.01;
hold on; h1 = plot( VWC.cs616SWC_open_1_12p5, '-ob' );
title( 'open\_1\_12.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_1_22p5, '.k' );
idx = 6800:13276;
VWC.cs616SWC_open_1_22p5( idx ) = VWC.cs616SWC_open_1_22p5( idx ) + 0.01;
hold on; h1 = plot( VWC.cs616SWC_open_1_22p5, '-ob' );
title( 'open\_1\_22.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_1_37p5, '.k' );
VWC.cs616SWC_open_1_37p5( 6800:end ) = ...
VWC.cs616SWC_open_1_37p5( 6800:end ) + 0.065;
VWC.cs616SWC_open_1_37p5( 6750:6910 ) = NaN;
hold on; h1 = plot( VWC.cs616SWC_open_1_37p5, '-ob' );
title( 'open\_1\_37.5' );legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_1_52p5, '.k' );
idx = 6891:size( VWC, 1 );
VWC.cs616SWC_open_1_52p5( idx ) = VWC.cs616SWC_open_1_52p5( idx ) + 0.032;
hold on; h1 = plot( VWC.cs616SWC_open_1_52p5, '-ob' );
title( 'open\_1\_52.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_1_2p5, '.k' );
VWC.cs616SWC_cover_1_2p5( 6800:7200 ) = NaN;
idx = 6890:9140;
VWC.cs616SWC_cover_1_2p5( idx ) = VWC.cs616SWC_cover_1_2p5( idx ) + 0.0137;
hold on; h1 = plot( VWC.cs616SWC_cover_1_2p5, '-ob' );
title( 'cover\_1\_2.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_1_12p5, '.k' );
VWC.cs616SWC_cover_1_12p5( 6800:7200 ) = NaN;
idx = 6890:10034;
VWC.cs616SWC_cover_1_12p5( idx ) = VWC.cs616SWC_cover_1_12p5( idx ) + 0.0388;
hold on; h1 = plot( VWC.cs616SWC_cover_1_12p5, '-ob' );
title( 'cover\_1\_12.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_1_22p5, '.k' );
VWC.cs616SWC_cover_1_22p5( 6800:7200 ) = NaN;
idx = 6890:16903;
VWC.cs616SWC_cover_1_22p5( idx ) = VWC.cs616SWC_cover_1_22p5( idx ) + 0.0388;
hold on; h1 = plot( VWC.cs616SWC_cover_1_22p5, '-ob' );
title( 'cover\_1\_22.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_1_37p5, '.k' );
VWC.cs616SWC_cover_1_37p5( 6800:end ) = ...
VWC.cs616SWC_cover_1_37p5( 6800:end ) + 0.045;
VWC.cs616SWC_cover_1_37p5( 6750:6910 ) = NaN;
hold on; h1 = plot( VWC.cs616SWC_cover_1_37p5, '-ob' );
title( 'cover\_1\_37.5' );legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_1_52p5, '.k' );
VWC.cs616SWC_cover_1_52p5( 6800:end ) = ...
VWC.cs616SWC_cover_1_52p5( 6800:end ) + 0.0225;
VWC.cs616SWC_cover_1_52p5( 6750:6910 ) = NaN;
hold on; h1 = plot( VWC.cs616SWC_cover_1_52p5, '-ob' );
title( 'cover\_1\_52.5' );legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_2_2p5, '.k' );
idx = 7156:7848;
VWC.cs616SWC_open_2_2p5( idx ) = VWC.cs616SWC_open_2_2p5( idx ) - 0.02;
hold on; h1 = plot( VWC.cs616SWC_open_2_2p5, '-ob' );
title( 'open\_1\_2.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_2_12p5, '.k' );
idx = 7172:7995;
VWC.cs616SWC_open_2_12p5( idx ) = VWC.cs616SWC_open_2_12p5( idx ) + 0.02057;
hold on; h1 = plot( VWC.cs616SWC_open_2_12p5, '-ob' );
title( 'open\_1\_12.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_2_22p5, '.k' );
VWC.cs616SWC_open_2_22p5( 6900:end ) = ...
VWC.cs616SWC_open_2_22p5( 6900:end ) + 0.019027;
hold on; h1 = plot( VWC.cs616SWC_open_2_22p5, '-ob' );
title( 'cover\_1\_22.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_2_37p5, '.k' );
VWC.cs616SWC_open_2_37p5( 6901:end ) = ...
VWC.cs616SWC_open_2_37p5( 6901:end ) + 0.035248;
hold on; h1 = plot( VWC.cs616SWC_open_2_37p5, '-ob' );
title( 'cover\_1\_37.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_open_2_52p5, '.k' );
VWC.cs616SWC_open_2_52p5( 6683:8600 ) = NaN;
VWC.cs616SWC_open_2_52p5( 8601:end ) = ...
VWC.cs616SWC_open_2_52p5( 8601:end ) + 0.026436;
hold on; h1 = plot( VWC.cs616SWC_open_2_52p5, '-ob' );
title( 'cover\_1\_52.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_2_2p5, '.k' );
idx = 6982:9200;
VWC.cs616SWC_cover_2_2p5( idx ) = VWC.cs616SWC_cover_2_2p5( idx ) - 0.083827;
hold on; h1 = plot( VWC.cs616SWC_cover_2_2p5, '-ob' );
title( 'open\_1\_2.5' ); legend( [ h0, h1 ], 'before', 'after' );
% cover_2_12.5 actually looks ok
figure(); h0 = plot( VWC.cs616SWC_cover_2_22p5, '.k' );
VWC.cs616SWC_cover_2_22p5( 6741:end ) = ...
VWC.cs616SWC_cover_2_22p5( 6741:end ) + 0.028255;
hold on; h1 = plot( VWC.cs616SWC_cover_2_22p5, '-ob' );
title( 'cover\_1\_22.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_2_37p5, '.k' );
VWC.cs616SWC_cover_2_37p5( 6901:end ) = ...
VWC.cs616SWC_cover_2_37p5( 6901:end ) + 0.054706;
hold on; h1 = plot( VWC.cs616SWC_cover_2_37p5, '-ob' );
title( 'cover\_1\_37.5' ); legend( [ h0, h1 ], 'before', 'after' );
figure(); h0 = plot( VWC.cs616SWC_cover_2_52p5, '.k' );
VWC.cs616SWC_cover_2_52p5( 6683:8600 ) = NaN;
VWC.cs616SWC_cover_2_52p5( 8601:end ) = ...
VWC.cs616SWC_cover_2_52p5( 8601:end ) + 0.027;
hold on; h1 = plot( VWC.cs616SWC_cover_2_52p5, '-ob' );
title( 'cover\_1\_52.5' ); legend( [ h0, h1 ], 'before', 'after' );