forked from gremau/NMEG_FluxProc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUNM_flux_031010.m
860 lines (745 loc) · 31.8 KB
/
UNM_flux_031010.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
function [ CO2OUT, H2OOUT, FCO2, FH2O, HSENSIBLE, HLATENT, RHOM, TDRY, OKNUM, ...
zoL, UVWTVAR, COVUVWT, HBUOYANT, USTAR, TRANSPORT, u_vector, ...
w_mean ] = ...
UNM_flux_031010( year_ts, month_ts, day_ts, UVW2, uvwmean, ...
SONDIAG, CO2, H2O, TD, RHO, irgadiag, rotation, ...
site, sitecode, num, PWATER, uvwmeanrot, ...
IRGAP, speed, temp2, theta )
%jan 31 2002 - adding linear detrend to the 7500 calculation, so we
%can look at the effect of the detrend on the fluxes. The flag
%input is no longer an 'agc' option because we will always
%calculate the agc statistics. Instead, it can have a value of
%'detrend' in which case we will linear detrend the 0 MINUTE AVGD
%WEBB CORRECTION CO2 AND H2O FLUX, ONLY!!!! ALL OTHER TERMS
%INCLUDING HEAT FLUXES AND INSTANTANEOUS WEBB CORRECTIONS ARE NOT
%DETRENDED!
%
% jan-16-2002 - fixed a few mistakes in calculating the Webb
% corrections based on averaged data, not sample by sample. 1) The
% covariances going into these equations were being detrended, so
% the detrending was removed - note the sample by sample fluxes
% are ok, there was no detrending done. 2) The wT covariance that
% goes into the averaged Webb equations was using the sonic
% temperature instead of the dry temperature. 3) The mean
% temperature going into the Webb equation (averaged) was using a
% combination of moist and dry temperature, because the second row
% only, corresponding to dried temperature, was not specified...
%
%
% Oct-25-2001 - add calculation using the IRGA AGC value. This
% eliminates a lot more points than my despiking routine, but it
% seems like it cleans up a lot of noisy intervals. With this
% approach it is important to have the closed path IRGA to fill in
% the gaps.
%
% Oct-16-2001 - add calculation of vertical advection term for
% fluxes as an additional output
%
% calculates fluxes of sensible and latent heat, co2, h2o from output
% of the LI7500 - returns raw fluxes, webb corrected fluxes both using
% a point by point calculation of the mol fractions and by correcting
% the raw fluxes with measured heat and moisture fluxes
%
% Definitions
%
% INPUTS:
% -uvw - sonic wind components (m/s), either rotated into the mean wind direction (3d rotation option) or raw (planar rotation option)
% u - along wind
% v - cross wind
% w - vertical
%
% SONDIAG - diagnostic variable for the sonic for each sample, contains a 1 if the measurement
% is good and a zero if there was a spike
%
% CO2 - 3XN array containing the output co2 variable from AIRDRY.M
% ROW 1: co2 in umol/mol dry air
% ROW 2: co2 in umol/mol wet air
% ROW 3: co2 in umol/m^3 wet air
%
% H2O - 3XN array containing the output h2o variable from AIRDRY.M
% ROW 1: h2o in mmol/mol dry air
% ROW 2: h2o in mmol/mol wet air
% ROW 3: H2O in mmol/m^3 wet air
%
% RHO - 3XN array containing the output RHO variable from AIRDRY.M
% ROW 1: mol dry air/m^3 wet air
% ROW 2: mol wet air/m^3 wet air
% ROW 3: Kg moist air/m^3 moist air
%
% TD = 2XN array containing output TD from airdry
% ROW 1: measured sonic temperature (C)
% ROW 2: dried sonic temperature (K)
%
% irgadiag - diagnostic variable for the open path irga for each sample, contains a 1
% if the measurement is good and a zero if there was a spike
% OUTPUTS
% Calculate a datenum from inputs to check against time periods that
% require corrections (PJ_girdle 2009 only at this point)
ts_date = datenum( year_ts, month_ts, day_ts );
% PJ_girdle correction end date
pjg_2009_date = datenum( 2009, 9, 1 );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate covariance matrix of sonic measurements
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% in the odd case where there is exactly one valid SONDIAG, u is a 1 by 4 matrix
% and cov treats it as a vector of observations, returning the 1 by 1 covariance
% of the four elements. In this oddball case, set the covariance matrix to a 4
% by 4 matrix of zeros. We are looking at you, 28 Nov 2009 from 23:00 to
% 23:29:59 at PJ_girdle...
if numel( find( SONDIAG ) ) == 1
u = zeros( 4, 4 );
elseif isempty( find( SONDIAG ) )
u = repmat( NaN, 4, 4 );
else
%covariance between (1) rotated coordinates (good values only) and (2)sonic
%temperature (good values only)
u = cov([UVW2(:,find(SONDIAG)); temp2(find(SONDIAG))]');
end
if rotation == sonic_rotation.threeD
UVWTVAR = diag(u);
COVUVWT = [ u(1,3); u(2,3); u(1,2); u(1,4); u(2,4); u(3,4)];
USTAR = sqrt(sqrt(u(1,3)^2 + u(2,3)^2));
qsqr = 0.5*( sum( UVW2(:,find(SONDIAG) ).^2 ) );
TRANSPORT = mean(UVW2(3,find(SONDIAG)).*qsqr); % calculate turbulent transport term
[hs] = cov( UVW2(3,find(SONDIAG)) , TD(2,find(SONDIAG)));
hsout = u(1,2);
HBUOYANT = 29/1000*38.6*1004*hsout; % BUOYANCY FLUX , approximate (W/m^2)
% USTAR = sqrt(sqrt(uw^2 + vw^2));
u_vector = mean( UVW2( :, find(SONDIAG) ), 2 );
w_mean = u_vector( 3 );
% UVWTVAR - 4X1 - variances of ROTATED wind components and the sonic temperature
% ROW 1: along-wind velocity variance
% ROW 2: cross-wind velocity variance
% ROW 3: vertical-wind velocity variance
% ROW 4: sonic temperature variance
%
% COVUVWT - 6X1 - covariances of ROTATED wind components and the sonic temperature
% ROW 1: uw co-variance
% ROW 2: vw co-variance
% ROW 3: uv co-variance
% ROW 4: ut co-variance
% ROW 5: vt co-variance
% ROW 6: wt co-variance
elseif rotation == sonic_rotation.planar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Specify planar coefficients here
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if length(u(~isnan(u))) == 16 && isnan(speed) == 0
if sitecode == 1 % grassland
if speed >= 5
b0 = 0.152528949;
b1 = -0.00082989;
b2 = 0.002517913;
k(1) = 0.000829887;
k(2) = -0.002517904;
k(3) = 0.999996486;
elseif speed < 5
b0 = 0.025221417;
b1 = 0.011187435;
b2 = 0.005053646;
k(1) = -0.011186592;
k(2) = -0.005053265;
k(3) = 0.999924659;
end
elseif sitecode == 2 % shrubland
if speed >= 5
b0 = 0.153116813;
b1 = 0.016330935;
b2 = -0.018475587;
k(1) = -0.016325972;
k(2) = 0.018469973;
k(3) = 0.999696115;
else
b0 = 0.046197667;
b1 = 0.024851316;
b2 = -0.018716161;
k(1) = -0.024839298;
k(2) = 0.01870711;
k(3) = 0.99951641;
end
elseif sitecode == 3 % juniper savanna
if speed >= 5
b0 = 0.081104622;
b1 = -0.005862329;
b2 = -0.015991732;
k(1) = 0.005861479;
k(2) = 0.015989413;
k(3) = 0.99985498;
else
b0 = 0.02499662;
b1 = -0.002888242;
b2 = -0.013527774;
k(1) = 0.002887966;
k(2) = 0.01352648;
k(3) = 0.999904342;
end
elseif sitecode == 4 % pinyon juniper
if speed >= 5
b0 = 0.000545198;
b1 = 0.03902567;
b2 = 0.023237575;
k(1) = -0.038985478;
k(2) = -0.023213642;
k(3) = 0.998970099;
else
b0 = -0.016562191;
b1 = 0.042138681;
b2 = 0.016933381;
k(1) = -0.042095294;
k(2) = -0.016915946;
k(3) = 0.998970388;
end
elseif sitecode == 5 % ponderosa pine
if speed >= 5
b0 = -0.201583097;
b1 = 0.039964498;
b2 = 0.042832557;
k(1) = -0.039896099;
k(2) = -0.04275925;
k(3) = 0.998288509;
else
b0 = 0.008839609;
b1 = 0.020435491;
b2 = 0.025895171;
k(1) = -0.020424381;
k(2) = -0.025881093;
k(3) = 0.999456359;
end
elseif sitecode == 6 % mixed conifer
if speed >= 5
b0 = 0.259543188;
b1 = -0.004703906;
b2 = 0.014195398;
k(1) = 0.00470338;
k(2) = -0.014193811;
k(3) = 0.999888201;
else
b0 = 0.079961079;
b1 = -0.024930957;
b2 = 0.044809422;
k(1) = 0.024898245;
k(2) = -0.044750626;
k(3) = 0.998687869;
end
elseif sitecode == 7 && year_ts(1) == 2004 % TX freeman
elseif sitecode == 7 && year_ts(1) == 2005 && month_ts(1) < 5 % use one set of values for
% first seven months, not separated out by windspeed, then use the same values as 2006
b0 = 0.024873451;
b1 = 0.002279925;
b2 = 0.002839777;
k(1) = -0.00227991;
k(2) = -0.002839758;
k(3) = 0.999993369;
elseif sitecode == 7 && year_ts(1) == 2005 && month_ts(1) >= 5 % latter half of 2005
% use same as 2006
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year_ts(1) == 2006 % all of 2006 looks pretty consistent, use one set of data
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year_ts(1) == 2007 && month_ts(1) < 3 % first 2 months of 2007
% use same as 2006
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year_ts(1) == 2007 && month_ts(1) == 3 || month_ts(1) == 4
% March and April 2007 has their own set of coefficients
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year_ts(1) == 2007 && month_ts(1) >= 5 %after that, use a new set of
% coefficients calculated with only the data in the last 6 months of 2007
b0 = -0.007905583;
b1 = 0.012986531;
b2 = -0.000801434;
k(1) = -0.012985432;
k(2) = 0.000801367;
k(3) = 0.999915365;
elseif sitecode == 7 && year_ts(1) == 2008 % Using the same as the latter part of 2007
b0 = -0.007905583;
b1 = 0.012986531;
b2 = -0.000801434;
k(1) = -0.012985432;
k(2) = 0.000801367;
k(3) = 0.999915365;
elseif sitecode == 7 && year_ts(1) == 2011 % Using the same as
% the latter part of
% 2007 ??? -TWH 30
% Sep 2011
b0 = -0.007905583;
b1 = 0.012986531;
b2 = -0.000801434;
k(1) = -0.012985432;
k(2) = 0.000801367;
k(3) = 0.999915365;
elseif sitecode == 8 % TX_forest
if theta >= 0 && theta <= 60
b0 = 0.224838191;
b1 = 0.051189541;
b2 = -0.031249502;
k(1) = -0.046221527;
k(2) = 0.014738558;
k(3) = 0.998206387;
elseif theta > 60 && theta <= 210
b0 = 0.094117303;
b1 = 0.03882402;
b2 = 0.011170481;
k(1) = -0.038792377;
k(2) = -0.011161377;
k(3) = 0.999184955;
elseif theta > 210 && theta <= 270
b0 = 0.070326918;
b1 = -0.026290012;
b2 = -0.009114614;
k(1) = 0.02627984;
k(2) = 0.009111088;
k(3) = 0.999613104;
elseif theta > 270 && theta <= 360
b0 = 0.215938294;
b1 = 0.123314215;
b2 = 0.000787889;
k(1) = -0.122387155;
k(2) = -0.000781966;
k(3) = 0.992482127;
end
elseif sitecode == 9 % TX_grassland
b0 = 0.017508885;
b1 = -0.005871475;
b2 = 0.017895419;
k(1) = 0.005870434;
k(2) = -0.017892246;
k(3) = 0.999822687;
elseif sitecode == 10 % pinyon juniper - girdled _UPDATED_ Febuary 2010
if speed >= 5
b0 = -0.0344557038769674;
b1 = -0.0128424391588686;
b2 = 0.0160405052917033;
k(1) = 0.012839728810921;
k(2) =-0.0160371200040598;
k(3) = 0.99978895380277;
else
b0 = -0.0473758714816513;
b1 = -0.0128600161662158;
b2 = 0.0101393306242113;
k(1) = 0.0128582920745777;
k(2)= -0.0101379712841514;
k(3) = 0.99986593394473;
end
elseif sitecode == 11 % New_GLand
b0 = 0.0430287;
b1 = 0.351210;
b2 = -0.0336278;
k(1) = -0.0350796;
k(2) = 0.0335881;
k(3) = 0.9988199;
% if speed >= 5
% b0 = 0.000545198;
% b1 = 0.03902567;
% b2 = 0.023237575;
% k(1) = -0.038985478;
% k(2) = -0.023213642;
% k(3) = 0.998970099;
% else
% b0 = -0.016562191;
% b1 = 0.042138681;
% b2 = 0.016933381;
% k(1) = -0.042095294;
% k(2) = -0.016915946;
% k(3) = 0.998970388;
% end
end
%determine unit vectors i,j (parallel to new coordinate x and y axes)
j = cross(k,uvwmean);
j = j/(sum(j.*j))^0.5;
i = cross(j,k);
uu=i(1)^2*u(1,1)+i(2)^2*u(2,2)+i(3)^2*u(3,3)+...
2*(i(1)*i(2)*u(1,2)+i(1)*i(3)*u(1,3)+i(2)*i(3)*u(2,3));
vv=j(1)^2*u(1,1)+j(2)^2*u(2,2)+j(3)^2*u(3,3)+...
2*(j(1)*j(2)*u(1,2)+j(1)*j(3)*u(1,3)+j(2)*j(3)*u(2,3));
ww=k(1)^2*u(1,1)+k(2)^2*u(2,2)+k(3)^2*u(3,3)+...
2*(k(1)*k(2)*u(1,2)+k(1)*k(3)*u(1,3)+k(2)*k(3)*u(2,3));
uw=i(1)*k(1)*u(1,1)+i(2)*k(2)*u(2,2)+i(3)*k(3)*u(3,3)+...
(i(1)*k(2)+i(2)*k(1))*u(1,2)+(i(1)*k(3)+i(3)*k(1))*u(1,3)+...
(i(2)*k(3)+i(3)*k(2))*u(2,3); % momentum flux
vw=j(1)*k(1)*u(1,1)+j(2)*k(2)*u(2,2)+j(3)*k(3)*u(3,3)+...
(j(1)*k(2)+j(2)*k(1))*u(1,2)+(j(1)*k(3)+j(3)*k(1))*u(1,3)+...
(j(2)*k(3)+j(3)*k(2))*u(2,3);
%mean w --fix for lag!!!!!
u_vector = [uvwmean(1);uvwmean(2);uvwmean(3)-b0]; %in implementing planar fit, this will need to be changed to use the mean of lag values. difference should be tiny, however.
w_mean = b0 + (b1*uvwmean(1)) + (b2*uvwmean(2));
UVWTVAR = diag(u);
qsqr = 0.5*( sum( UVW2(:,find(SONDIAG) ).^2 ) );
TRANSPORT = mean(UVW2(3,find(SONDIAG)).*qsqr); % calculate turbulent transport term
[hs] = cov( UVW2(3,find(SONDIAG)) , TD(2,find(SONDIAG)));
hsout = u(1,2);
HBUOYANT = 29/1000*38.6*1004*hsout; % BUOYANCY FLUX , approximate (W/m^2)
USTAR = sqrt(sqrt(uw^2 + vw^2));
else
UVWTVAR = NaN*ones(4,1);
COVUVWT = NaN*ones(6,1);
USTAR = NaN;
HBUOYANT = NaN;
TRANSPORT = NaN;
u_vector = NaN*ones(3,1);
w_mean = NaN;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% parameters for sensor separation and spectral corrections (Massman)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if sitecode == 1
z_CSAT = 3.2; sep2 = 0.191; angle = 28.94; h_canopy = 0.25; %angle was 4 before, sep2 was .157,
elseif sitecode == 2
z_CSAT = 3.2; sep2 = 0.134; angle = 11.18; h_canopy = 0.8;
elseif sitecode == 3
z_CSAT = 10.35; sep2 = .2; angle = 25; h_canopy = 3;
elseif sitecode == 4 || sitecode == 14 %PJ/TestSite
z_CSAT = 8.2; sep2 = .143; angle = 19.3; h_canopy = 4;
elseif sitecode == 5
z_CSAT = 24.02; sep2 = 0.15; angle = 15.266; h_canopy = 17.428;
elseif sitecode == 6
z_CSAT = 23.9; sep2 = 0.375; angle = 71.66; h_canopy = 16.56;
elseif sitecode == 7
z_CSAT = 8.75; sep2 = .241; angle = 31.37109; h_canopy = 2.5;
elseif sitecode == 8
z_CSAT = 15.24; sep2 = .11; angle = 13.79; h_canopy = 7.62;
elseif sitecode == 9
z_CSAT = 4; sep2 = .19; angle = 31.59; h_canopy = 1;
elseif sitecode == 10 % here for PJ_girdle
% These heights need checking/changin
z_CSAT = 5.5; sep2 = 0.194; angle = 13.3; h_canopy = 4;
% adjust instrument height and angle starting 11 Aug 2011
if datenum(year_ts(1), month_ts(1), day_ts(1)) >= datenum(2011, 8, 11)
%fprintf(1, 'using instrument angle & height for 11 Aug 2011 onward\n');
z_CSAT = 6.5; sep2 = 0.194; angle = 16.71; h_canopy = 4;
end
elseif sitecode == 11 % for New_GLand
z_CSAT = 3.2; sep2 = 0.142; angle = 21.67; h_canopy = 0.25; %z_CSAT unknown as of 100610
elseif sitecode == 13 % for MCon_SS , FIXME - these are wrong!!!
z_CSAT = 29.9; sep2 = 0.375; angle = 71.66; h_canopy = 18.56;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set up lag for-loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
steps=0; %number of steps forward and back that data should be shifted. (e.g., 2 tries 5 alignments: -2, -1, 0, 1, 2)
count=0;
for i=-steps:steps
count=count+1;
nshift=i;
ashift=abs(nshift);
numlag=num-ashift;
if nshift==0
CO2lag=CO2;
H2Olag=H2O;
RHOlag=RHO;
idiaglag=irgadiag;
uvwlag=UVW2;
TDlag=TD;
SONDIAGlag=SONDIAG;
iok = find(SONDIAGlag & idiaglag(1,:) & idiaglag(2,:) & idiaglag(3,:));
irgaok = find(idiaglag(1,:) & idiaglag(2,:) & idiaglag(3,:));
notok = find(SONDIAGlag==0 | idiaglag(1,:)==0 | idiaglag(2,:)==0);
co2values = length(CO2lag);
okvalues = length(iok);
count = 1;
elseif nshift>0
CO2lag=([CO2(:,(1+ashift:num))]);
H2Olag=([H2O(:,(1+ashift:num))]);
RHOlag=([RHO(:,(1+ashift:num))]);
idiaglag=([irgadiag(:,1+ashift:num)]);
uvwlag=([uvw(:,1:numlag)]);
TDlag = ([TD(:,1:numlag)]);
SONDIAGlag=([SONDIAG(1:numlag)]);
% iok = find(SONDIAGlag & idiaglag(1,:) & idiaglag(2,:));first = length(iok)
% iok = find(iok>steps & iok<num-steps);second = length(iok)
% iok = iok + steps;
%
TDnans = find(isnan(TDlag(2,:)));
notok = find(iok == 0);
elseif nshift<0
CO2lag=([CO2(:,1:numlag)]);
H2Olag=([H2O(:,1:numlag)]);
RHOlag=([RHO(:,1:numlag)]);
idiaglag=([irgadiag(:,1:numlag)]);
uvwlag=([uvw(:,(1+ashift:num))]);
TDlag = ([TD(:,(1+ashift:num))]);
SONDIAGlag=([SONDIAG(1+ashift:num)]);
iok = find(SONDIAGlag & idiaglag(1,:) & idiaglag(2,:)); first = length(iok);
iok = find(iok>steps & iok<num-steps); second = length(iok);
iok = iok - steps;
end
it = find(SONDIAGlag);
iw = find(SONDIAGlag);
iirga = find(idiaglag(1,:) & idiaglag(2,:)); %?
ok = size(iok);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% START WITH SOME THINGS THAT ONLY REQUIRE THE IRGA: CO2 & H2O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if length(find(irgaok)) > 6000 %gives NaN for CO2 & H2O if less than 9000 good irga readings
x=CO2lag(1,irgaok); %ROW 1: co2 in umol/mol dry air
CO2OUT = [min(x); max(x); median(x); mean(x); std(x) ];
x=H2Olag(1,irgaok); %ROW 1: h2o in mmol/mol dry air
H2OOUT = [min(x); max(x); median(x); mean(x); std(x) ];
else
CO2OUT=NaN*ones(5,1);
H2OOUT=NaN*ones(5,1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALCULATIONS THAT REQUIRE BOTH SONIC/IRGA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if length(iok) < 6000 %length(find(iok))<6000
FCO2=NaN*ones(5,1);
FH2O=NaN*ones(6,1);
HSENSIBLE=NaN*ones(4,1);
HLATENT=NaN*ones(3,1);
RHOM=NaN*ones(3,1);
Lv=NaN;
COVCHT=NaN*ones(3,1);
TDRY = mean(TDlag(2,iok));
OKNUM = ok;
ORIGFLUXLAG=NaN*ones(2,1); % needs to be greater if lag is involved, was going to do 1*steps, but steps is 0 now
zoL=NaN;
UVWTVAR = NaN*ones(4,1);
COVUVWT = NaN*ones(6,1);
USTAR = NaN;
HBUOYANT = NaN;
TRANSPORT = NaN;
u_vector = NaN*ones(3,1);
w_mean = NaN;
else
% DRY AIR MOLAR DENSITY
% Dry air molar density (moles dry air / m^3 moist air)
% The mean requires that both the sonic and the irga were
% not spiking. Also calculate mean wet air molar density
% to troubleshoot difference in sensible heat flux between
% fortran code and matlab (3/9/2001)
rho_a = mean(RHOlag(1,iok));
rho_w = mean(RHOlag(2,iok));
rho_3 = mean(RHOlag(3,iok));
MEANRHO= [rho_a rho_w rho_3];
% calculate densities in grams/m^3 moist air for 10Hz data
rhoa = RHOlag(1,:)*28.966;
rhov = (RHOlag(2,:)-RHOlag(1,:))*18.016;
rhoc = CO2lag(3,:)*44/10^6;
RHOM = [mean(rhoa(iok))/28.966;mean(rhov(iok))/18.016;mean(rhoc(iok))/44];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SPECIFIC HEAT CAPACITY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dry air Cp - not a moist air Cp because we use dried air
Cp = 1004.67 + (mean(TDlag(2)).^2./3364); % J/Kg K dry air
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALCULATE SOME STATISTICS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cht = [CO2lag(1,iok);H2Olag(1,iok);TDlag(2,iok)]';
covs = cov(cht);
COVCHT = [covs(1,2); covs(1,3); covs(2,3)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LATENT HEAT OF VAPORIZATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (J/Kg) from Stull p 641
Lv = mean( (2.501*ones(size(iok))-0.00237*(TDlag(2,iok)-273.15))*10^3);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% UNCORRECTED WATER VAPOR FLUX AND LATENT HEAT FLUX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the water vapor density in (moles H2o/m^3 moist air)
% and raw water vapor flux (mmol/m^2/s)
% and raw latent heat flux (W/m^2)
rho_v = H2Olag(3,:)/1000;
[uhl2] = cov( uvwlag(1,iok) , rho_v(iok));
[vhl2] = cov( uvwlag(2,iok) , rho_v(iok));
[whl2] = cov( uvwlag(3,iok) , rho_v(iok));
uhl2max=(uhl2(1,2));
vhl2max=(vhl2(1,2));
whl2max=(whl2(1,2));
if rotation == sonic_rotation.threeD;
%3D rotation-- keep variables the same
uhl2max2=uhl2max;
vhl2max2=vhl2max;
whl2max2=whl2max;
elseif rotation == sonic_rotation.planar;
%planar rotation: determine scalar flux in new coordinate (code from
%HANDBOOK OF MICROMETEOROLOGY P. 63)
H = [uhl2max vhl2max whl2max];
uhl2max2=sum(i.*H);
vhl2max2=sum(j.*H);
whl2max2=sum(k.*H);
end
E_raw = whl2max2*1000; % this is now moles h2o m-2 s-1
HL_raw = 18.016/1000*Lv*E_raw;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Corrections for bad IRGA prior to 1 Sept 2009 Developed March 2010 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if sitecode == 10 && ts_date < pjg_2009_date
% HL_raw = (HL_raw.*1.1484)+3.6589; % Correction based on regression in Futher_flux_corrections .xls file
% E_raw = ((HL_raw./Lv)./18.016).*1000;
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% UNCORRECTED CO2 FLUX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the CO2 density in (micromoles CO2/m^3 moist air)
% and raw co2 flux (micromoles/m^2/s)
umolco2 = CO2lag(3,:); % umol co2/m^3 moist air
[uco2] = cov( uvwlag(1,iok), umolco2(iok));
[vco2] = cov( uvwlag(2,iok), umolco2(iok));
[wco2] = cov( uvwlag(3,iok), umolco2(iok));
uco2max=(uco2(1,2));
vco2max=(vco2(1,2));
wco2max=(wco2(1,2));
if rotation == sonic_rotation.threeD;
%3D rotation-- keep variables the same
uco2max2=uco2max;
vco2max2=vco2max;
wco2max2=wco2max;
elseif rotation == sonic_rotation.planar;
%planar rotation: determine scalar flux in new coordinate (code from
%HANDBOOK OF MICROMETEOROLOGY P. 63)
H= [uco2max vco2max wco2max];
uco2max2=sum(i.*H);
vco2max2=sum(j.*H);
wco2max2=sum(k.*H);
end
Fc_raw = wco2max2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Corrections for bad IRGA prior to 1 Sept 2009 Developed March 2010 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if sitecode == 10 && ts_date < pjg_2009_date
% Correction based on regression in Futher_flux_corrections .xls file
Fc_raw=(Fc_raw.*1.1623)-0.096;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SENSIBLE HEAT FLUX (W/m^2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mar 8 2001 - adding a second heat flux calculated
% with the sonic temperature (not dried) - this is
% technically not the sensible heat flux, but i think
% it is assumed to be in the fortran code
[uTd] = cov( uvwlag(1,iok) , TDlag(2,iok));
[vTd] = cov( uvwlag(2,iok) , TDlag(2,iok));
[wTd] = cov( uvwlag(3,iok) , TDlag(2,iok));
uTdmax=(uTd(1,2));
vTdmax=(vTd(1,2));
wTdmax=(wTd(1,2));
if rotation == sonic_rotation.threeD
%3D rotation-- keep variables the same
uTdmax2=uTdmax;
vTdmax2=vTdmax;
wTdmax2=wTdmax;
elseif rotation == sonic_rotation.planar
%planar rotation: determine scalar flux in new coordinate (code from
%HANDBOOK OF MICROMETEOROLOGY P. 63)
H= [uTdmax vTdmax wTdmax];
uTdmax2=sum(i.*H);
vTdmax2=sum(j.*H);
wTdmax2=sum(k.*H);
COVUVWT = [ u(1,3); u(2,3); u(1,2); uTdmax2; vTdmax2; wTdmax2];
end
% calculate the sensible heat flux -- modify dry temp covariance to correct units
HSdry = 28.966/1000*rho_a*Cp*wTdmax2;
TDRY = mean(TDlag(2,iok));
[uhs] = cov( uvwlag(1,iok), TDlag(1,iok));
[vhs] = cov( uvwlag(2,iok), TDlag(1,iok));
[whs] = cov( uvwlag(3,iok), TDlag(1,iok));
uhsmax=(uhs(1,2));
vhsmax=(vhs(1,2));
whsmax=(whs(1,2));
if rotation == sonic_rotation.threeD
%3D rotation-- keep variables the same
uhsmax2=uhsmax;
vhsmax2=vhsmax;
whsmax2=whsmax;
elseif rotation == sonic_rotation.planar
%planar rotation: determine scalar flux in new coordinate (code from
%HANDBOOK OF MICROMETEOROLOGY P. 63)
H= [uhsmax vhsmax whsmax];
uhsmax2=sum(i.*H);
vhsmax2=sum(j.*H);
whsmax2=sum(k.*H);
end
HSwet = 28.966/1000*rho_a*Cp*whsmax2;
HSwetwet = 28.966/1000*rho_w*Cp*whsmax2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Water vapor density flux
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[urhov] = cov( uvwlag(1,iok), rhov(iok) );
[vrhov] = cov( uvwlag(2,iok), rhov(iok) );
[wrhov] = cov( uvwlag(3,iok), rhov(iok) );
urhovmax=(urhov(1,2));
vrhovmax=(vrhov(1,2));
wrhovmax=(wrhov(1,2));
if rotation == sonic_rotation.threeD
%3D rotation-- keep variables the same
urhovmax2=urhovmax;
vrhovmax2=vrhovmax;
wrhovmax2=wrhovmax;
elseif rotation == sonic_rotation.planar
%planar rotation: determine scalar flux in new coordinate (code from
%HANDBOOK OF MICROMETEOROLOGY P. 63)
H= [urhovmax vrhovmax wrhovmax];
urhovmax2=sum(i.*H);
vrhovmax2=sum(j.*H);
wrhovmax2=sum(k.*H); % units are what mols m-2 s-1
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Massman CORRECTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
co2_1 = mean(CO2lag(1,iok)); % means needed for massman
co2_2 = mean(CO2lag(2,iok));
co2_3 = mean(CO2lag(3,iok));
MEANCO2= [co2_1 co2_2 co2_3];
MEANPWATER = mean(PWATER); % vapor pressure measured by IRGA in kPa
td_1 = mean(TDlag(1,iok));
td_2 = TDRY;
MEANTD = [td_1 td_2];
[ Uz_co2_c, Uz_h2o_c, Uz_Ts_c, Fc_c, LE_c, Hs_wet_c, Hs_dry_c, H_wet_c, ...
James_water_term, James_heat_term, zoL, Uz_rhov_c ] = ...
UNM_WPLMassman( uvwmean, wTdmax2, E_raw*0.018, Fc_raw*0.044, ...
MEANCO2, MEANTD, MEANRHO, USTAR, hsout, sep2, ...
angle, z_CSAT, IRGAP*1000, MEANPWATER, Lv, ...
h_canopy, wrhovmax2*0.018);
% Put Massman-corrected raw fluxes back in units we need
Fc_raw_massman = Uz_co2_c/0.044;
E_raw_massman = Uz_h2o_c/0.018;
HSdry_massman = 28.966/1000*rho_a*Cp*Uz_Ts_c;
HL_raw_massman = 18.016/1000*Lv*E_raw_massman;
E_rhov_massman = Uz_rhov_c/0.018;
Hs_wet_massman = Hs_wet_c; %should be in W m-2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% WPL CORRECTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mu = 28.966/18.016;
sigma = mean(rhov(iok))/mean(rhoa(iok));
% sigma = mean(rhov(iok))/(mean(rhoa(iok))+7)
Fc_water_term = mu*mean(rhoc(iok))/mean(rhoa(iok))*E_rhov_massman*(10^6/44);
Fc_heat_term_massman = (1+mu*sigma)*mean(rhoc(iok))/mean(TDlag(2,iok))*Uz_Ts_c*(10^6/44);
% Fc_heat_term_massman = (1+mu*sigma)*(mean(rhoc(iok))+0.05)/mean(TDlag(2,iok))*Uz_Ts_c*(10^6/44)
Fc_corr_massman_ourwpl = Fc_raw_massman + Fc_water_term + Fc_heat_term_massman;
E_water_term = (1+mu*sigma)*E_rhov_massman*(10^3/18.016);
E_heat_term_massman = (1+mu*sigma)*mean(rhov(iok))/mean(TDlag(2,iok))*Uz_Ts_c*(10^3/18.016);
E_wpl_massman = E_water_term + E_heat_term_massman;
% this needs to be fixed to include the E_heat_term_massman! Right now
% (as a bandaid) this correction is in UNM_Remove_Bad_Data. Make sure to
% remove that when you include the correction here! -TWH, 8 Mar 2012
HL_wpl_massman = 18.016/1000*Lv*(E_raw_massman);% + E_heat_term_massman );
if i==0
HLATENT = [HL_raw; HL_raw_massman; HL_wpl_massman];
HSENSIBLE = [HSdry; HSwet; HSwetwet; HSdry_massman];
FCO2 = [Fc_raw;Fc_raw_massman;Fc_water_term;Fc_heat_term_massman;Fc_corr_massman_ourwpl];
FH2O = [E_raw;E_raw_massman;E_water_term;E_heat_term_massman;E_wpl_massman;E_rhov_massman];
OKNUM = ok;
end
end
end