forked from gremau/NMEG_FluxProc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUNM_process_10hz_main.m
194 lines (169 loc) · 6.85 KB
/
UNM_process_10hz_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
function [ result, all_data ] = UNM_process_10hz_main( sitecode, ...
t_start, ...
t_end, ...
varargin )
% UNM_PROCESS_10HZ_MAIN: top-level function for matlab processing of 10-hz data
% from flux towers to 30-minute average.
%
% t_start and t_end may not span two different calendar years.
%
% I found that attempting to process a year at a time quickly ran out of RAM on
% jemez. To work around this I added the period_n_days parameter argument to
% divide the processing into smaller "chunks". I find that 30 days (the default
% for period_n_days) works nicely on Jemez and on my laptop with 8GB RAM. 5
% days seems to be about all my laptop with 2GB RAM can handle. --TWH
%
%USAGE
% result = UNM_process_10hz_main( sitecode, t_start, t_end )
% result = UNM_process_10hz_main( sitecode, t_start, t_end, lag)
% result = UNM_process_10hz_main( sitecode, t_start, t_end, ..., rotation)
% result = UNM_process_10hz_main( sitecode, t_start, t_end, ..., ts_data_dir)
% result = UNM_process_10hz_main( sitecode, t_start, t_end, ..., period_n_days)
% [ result, data ] = UNM_process_10hz_main( sitecode, t_start, t_end, ... )
%
%INPUTS
% sitecode ( UNM_sites object or integer ): sitecode to process
% t_start (matlab datenum): data timestamp for starting processing
% t_end (matlab datenum): data timestamp for ending processing
%
% PARAMETER-VALUE PAIRS
% lag (integer): optional, 1 or 0 (default 0)
% rotation (sonic_rotation object): sonic_rotation.planar or
% sonic_rotation.threeD (default threeD)
% ts_data_dir: directory containing the TOB1 files. Defaults to
% $FLUXROOT/SITENAME/ts_data
% period_n_days: size of "chunks" to process in one go, in days. Default
% is 30
%
% OUTPUTS:
% result: 0 on success, non-zero on failure
% all_data: dataset array containing the averaged data
%
% SEE ALSO
% UNM_sites, sonic_rotation, dataset
%
% author: Timothy W. Hilton, UNM, April 2012
% -----
% define inputs, with defaults for optionals, and with type-checking
% -----
p = inputParser;
p.addRequired( 'sitecode', @( x ) ( isnumeric( x ) | isa( x, 'UNM_sites' ) ) );
p.addRequired( 't_start', @isnumeric );
p.addRequired( 't_end', @isnumeric );
p.addParameter( 'lag', ...
0, ...
@( x ) isnumeric( x ) );
p.addParameter( 'rotation', ...
sonic_rotation.threeD, ...
@( x ) isa( x, 'sonic_rotation' ) );
p.addParameter( 'ts_data_dir', ...
[], ...
@ischar );
p.addParameter( 'period_n_days', ...
30, ...
@(x) isnumeric( x ) & ( x > 0 ) );
% parse optional inputs
p.parse( sitecode, t_start, t_end, varargin{ : } );
sitecode = p.Results.sitecode;
t_start = p.Results.t_start;
t_end = p.Results.t_end;
lag = p.Results.lag;
rotation = p.Results.rotation;
ts_data_dir = p.Results.ts_data_dir;
period_n_days = p.Results.period_n_days;
% -----
% if called with more than two output arguments, throw exception
% -----
nargoutchk( 0, 2 );
% -----
% start processing
% -----
t0 = now(); % track running time
result = 1; % initialize to failure -- will change on successful completion
print_memory_message = false;
[ year_start, ~, ~, ~, ~, ~ ] = datevec( t_start );
[ year_end, ~, ~, ~, ~, ~ ] = datevec( t_end );
if ( year_start ~= year_end )
error( '10-hz data processing may not span different calendar years' );
else
year = year_start;
end
%process a few days at a time -- a whole year bogged down for lack of memory
process_periods = t_start : period_n_days : t_end;
if ( process_periods( end ) < t_end )
process_periods = [ process_periods, t_end ];
end
n_pds = numel( process_periods ) - 1;
chunks_list = cell( 1, n_pds );
for i = 1 : n_pds
this_t_start = process_periods( i );
this_t_end = process_periods( i + 1 );
if( isempty( ts_data_dir ) )
ts_data_dir = fullfile( get_site_directory( sitecode ), 'ts_data' );
end
% process 30-minute averages
chunks_cell{ i } = process_TOB1_chunk( sitecode, ...
this_t_start, ...
this_t_end, ...
lag, ...
rotation, ...
ts_data_dir );
if isempty( chunks_cell{ i } )
chunks_cell( i ) = [];
end
if print_memory_message
fprintf( '==================================================\n');
fprintf( 'iteration %d/%d\n', i, n_pds );
memory
fprintf( '==================================================\n');
end
end
% Concatenate chunks into one dataset
all_data = vertcat( chunks_cell{ : } );
all_data.timestamp = datenum( all_data.year, all_data.month, all_data.day, ...
all_data.hour, all_data.min, all_data.second );
all_data = dataset_fill_timestamps( all_data, ...
'timestamp', ...
't_min', min( all_data.timestamp ), ...
't_max', t_end );
[ all_data.year, all_data.month, all_data.day, ...
all_data.hour, all_data.min, all_data.second ] = ...
datevec( all_data.timestamp );
all_data.date = datestr( all_data.timestamp, 'mmddyy' );
all_data.jday = all_data.timestamp - datenum( year, 1, 1 ) + 1;
% this last part takes a long time -- save results so we can restart if one
% of the following steps issues an error
outfile = fullfile( get_out_directory( sitecode ), ...
'TOB1_data', ...
sprintf( '%s_TOB1_%d.mat', ...
get_site_name( sitecode ), year ) );
save( outfile, 'all_data' );
% FIXME - At this point reading in the TOB1_data file ("outfile") and then
% appending the new data ("all_data") before writing "filled" files would
% be really nice. It would reduce the amount of times you have to process
% 10hz data while remaking fluxall files. Something similar for eddypro
% processing would also be good
% format to match existing FLUX_all_YYYY.xls files
% for some reason, two time columns
timestamp2 = all_data.timestamp;
timestamp2 = dataset( timestamp2) ;
all_data = [ timestamp2, all_data ];
% only one iok column
if size( all_data.iok, 2 ) > 1
all_data.iok = all_data.iok( :, 2 );
end
% -----
% write filled data to disk
% -----
disp( 'exporting dataset' );
export( all_data, ...
'file', strrep( outfile, '.mat', '_filled.txt' ) );
disp( 'writing .mat file' );
save( strrep( outfile, '.mat', '_filled.mat' ), 'all_data' );
%--------------------------------------------------
fprintf( 1, 'done (%d seconds)\n', int32( ( now() - t0 ) * 86400 ) );
result = 0;
varargout = { result };
if nargout == 2
varargout = { result, all_data };
end