forked from gremau/NMEG_FluxProc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamend_gapfilling_and_partitioning.m
340 lines (321 loc) · 14.5 KB
/
amend_gapfilling_and_partitioning.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
function data_amended = amend_gapfilling_and_partitioning( site, yr, data_in )
% AMEND_GAPFILLING_AND_PARTITIONING - fix or remove periods where
% gapfilled and partitioned fluxes fail or are ridiculous
%
% FIXME: documentation
%
% Called from Ameriflux File Maker
%
% INPUTS
% site: UNM_sites object; which site?
% yr: the year. Either single value or N-element vector if data span
% more than one year.
% data in: Data with gapfilled and partitioned fluxes output from
% multiple sources
%
% OUTPUTS
% tbl_correct: MATLAB table; contains corrected gapfilling values
%
% SEE ALSO
% UNM_sites
%
% Gregory E. Maurer
[ this_year, ~, ~ ] = datevec( now );
% -----
% define inputs, with defaults and type checking
% -----
args = inputParser;
args.addRequired( 'site', @(x) ( isintval( x ) | isa( x, 'UNM_sites' ) ) );
args.addRequired( 'yr', ...
@(x) ( isintval( x ) & ( x >= 2006 ) & ( x <= this_year ) ...
) );
args.addRequired( 'data_in', @istable );
% parse optional inputs
args.parse( site, yr, data_in );
site = args.Results.site;
yr = args.Results.yr;
data_in = args.Results.data_in;
% Make a copy of data_in to correct and add an "amended" respiration col
data_amended = data_in;
data_amended.Reco_HBLR_amended = data_amended.Reco_HBLR;
switch site
case UNM_sites.JSav
if yr == 2007
% the gapfiller does some filling before the JSav tower was
% operational (4 May 2007 15:30), but the filled data do not look
% good (they are time-shifted). Remove those data here.
idx = 1:DOYidx( 124.56 );
non_data_vars = { 'Day', 'Month', 'Year', 'Hour', ...
'Minute', 'julday', 'Hr', 'timestamp' };
data_cols = find( not( ismember( ...
data_amended.Properties.VariableNames, non_data_vars ) ) );
data_amended{ idx, data_cols } = NaN;
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
end
case UNM_sites.PPine
% Several periods with abnormally high respiration at PPine. Amend
% as per Marcy's request
switch yr
% case 2007
% idx = DOYidx( 227.24 ) : DOYidx( 240.16 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 4.2 );
% dfig = plot_amended( data_in, data_amended, ...
% 'Reco_HBLR', site, yr );
case 2009
idx = DOYidx( 21 ) : DOYidx( 28.25 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 4.5 );
idx2 = DOYidx( 40.5 ) : DOYidx( 49 );
data_amended.Reco_HBLR_amended( idx2 ) = ...
norm( data_in.Reco_HBLR( idx2 ), 2.15 );
% idx3 = DOYidx( 243 ) : DOYidx( 249 );
% data_amended.Reco_HBLR_amended( idx3 ) = ...
% norm( data_in.Reco_HBLR( idx3 ), 5 );
% idx4 = DOYidx( 317 ) : DOYidx( 320.85 );
% data_amended.Reco_HBLR_amended( idx4 ) = ...
% norm( data_in.Reco_HBLR( idx4 ), 6 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2010
% idx = DOYidx( 219.3 ) : DOYidx( 222.8 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 7 );
idx2 = DOYidx( 345 ) : DOYidx( 366 );
data_amended.Reco_HBLR_amended( idx2 ) = ...
norm( data_in.Reco_HBLR( idx2 ), 2.2 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2011
idx = DOYidx( 12.5 ) : DOYidx( 59 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 4 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
% case 2012
% idx = DOYidx( 179 ) : DOYidx( 191 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 7 );
% idx2 = DOYidx( 321.1 ) : DOYidx( 328 );
% data_amended.Reco_HBLR_amended( idx2 ) = ...
% norm( data_in.Reco_HBLR( idx2 ), 6.25 );
% idx3 = DOYidx( 345.35 ) : DOYidx( 350.9 );
% data_amended.Reco_HBLR_amended( idx3 ) = ...
% norm( data_in.Reco_HBLR( idx3 ), 3.5 );
% dfig = plot_amended( data_in, data_amended, ...
% 'Reco_HBLR', site, yr );
case 2013
idx = DOYidx( 323.2 ) : DOYidx( 366 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 2.1 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
% case 2014
% idx = DOYidx( 235.2 ) : DOYidx( 240.75 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 6.2 );
% dfig = plot_amended( data_in, data_amended, ...
% 'Reco_HBLR', site, yr );
case 2015
% 1 periods with abnormally high respiration this year.
% idx = DOYidx( 316.25 ) : DOYidx( 320.85 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 6 );
% idx = DOYidx( 323.2 ) : DOYidx( 329.0 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 5.6 );
idx = DOYidx( 337.25 ) : DOYidx( 340.8 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 4.2 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
end
case UNM_sites.MCon
switch yr
case 2008
idx = DOYidx( 362 );
data_amended.Reco_HBLR_amended( idx:end ) = ...
norm( data_in.Reco_HBLR( idx:end ), 1.8 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2009
% This seems to shift flux variables for the first 20 days of 2009
% at MCon (which are all gapfilled) forward 1 hour. This is surely
% Related to the radiation gapfilling issue. I'm not sure
% we should do this though and I am commenting it out - GEM
% NEE_vars = cellfun( @(x) not(isempty(x)), ...
% regexp( pt_GL_tbl.Properties.VariableNames, '.*NEE.*' ) );
% GPP_vars = cellfun( @(x) not(isempty(x)), ...
% regexp( pt_GL_tbl.Properties.VariableNames, '.*GPP.*' ) );
% RE_vars = cellfun( @(x) not(isempty(x)), ...
% regexp( pt_GL_tbl.Properties.VariableNames, '.*RE.*' ) );
% LE_vars = cellfun( @(x) not(isempty(x)), ...
% regexp( pt_GL_tbl.Properties.VariableNames, '.*LE.*' ) );
% H_vars = cellfun( @(x) not(isempty(x)), ...
% regexp( pt_GL_tbl.Properties.VariableNames, '.*H_.*' ) );
% shift_vars = find( NEE_vars | GPP_vars | RE_vars | H_vars );
% idx = 1:DOYidx( 20 );
% temp_arr = table2array( data_in );
% temp_arr( idx, : ) = shift_data( temp_arr( idx, : ), -1.0, ...
% 'cols_to_shift', shift_vars );
% data_amended = replacedata( temp_arr, ...
% 'VariableNames', data_in.Properties.VariableNames );
case 2010
idx = DOYidx( 301.35 ) : DOYidx( 313.7 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 1.8 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2011
% the gapfiller/partitioner put in a big RE spike between days 300
% and 335. Dampen that spike to 2 (as per conversation with Marcy 17
% Apr 2013)
% Commenting this because the gapfiller no longer does this, so
% this code actually creates a spike now. GEM 5/13/2015
% idx = DOYidx( 300 ) : DOYidx( 335 );
% data_amended.Reco_HBLR( idx ) = data_in.Reco_HBLR( idx ) .* ...
% ( 2 / max( data_in.Reco_HBLR( idx ) ) );
case 2012
% the gapfiller/partitioner put in a big RE spike between days
% 120 and 133. Dampen that spike to 6.
% Commenting this because the gapfiller no longer does this, so
% this code actually creates a spike now. GEM 5/13/2015
% idx = DOYidx( 120 ) : DOYidx( 133 );
% data_amended.Reco_HBLR( idx ) = data_in.Reco_HBLR( idx ) .* ...
% ( 6 / max( data_in.Reco_HBLR( idx ) ) );
end
case UNM_sites.GLand
switch yr
case 2007
% the gapfiller does some filling before the tower was
% operational (5 June 2007 18:00), but the filled data look
% bad. Remove those data here.
% NOT NEEDED - old fluxall data is now merged in during RBD
% processing
% idx = 1:DOYidx( 156.7 );
% non_data_vars = { 'Day', 'Month', 'Year', 'Hour', ...
% 'Minute', 'julday', 'Hr', 'timestamp' };
% data_cols = find( not( ismember( ...
% data_amended.Properties.VariableNames, non_data_vars ) ) );
% data_amended{ idx, data_cols } = NaN;
% dfig = plot_amended( data_in, data_amended, ...
% 'Reco_HBLR', site, yr );
case 2012
% 1 period with abnormally high respiration this year. Amend
% as per Marcy's request
% idx = DOYidx( 192.5 ) : DOYidx( 217.4 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 1.55 );
% dfig = plot_amended( data_in, data_amended, ...
% 'Reco_HBLR', site, yr );
end
case UNM_sites.SLand
switch yr
case 2007
% the gapfiller does some filling before the tower was
% operational (30 May 2007 18:00), but the filled data look
% bad. Remove those data here.
% NOT NEEDED - old fluxall data is now merged in during RBD
% processing
% idx = 1:DOYidx( 150.72 );
% non_data_vars = { 'Day', 'Month', 'Year', 'Hour', ...
% 'Minute', 'julday', 'Hr', 'timestamp' };
% data_cols = find( not( ismember( ...
% data_amended.Properties.VariableNames, non_data_vars ) ) );
% data_amended{ idx, data_cols } = NaN;
% dfig = plot_amended( data_in, data_amended, ...
% 'Reco_HBLR', site, yr );
end
case UNM_sites.PJ_girdle
switch yr
case 2009
% 2 periods with abnormally high respiration this year. Amend
% as per Marcy's request
idx = DOYidx( 141.1 ) : DOYidx( 144.5 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 3.8 );
% idx2 = DOYidx( 224.25 ) : DOYidx( 228.8 );
% data_amended.Reco_HBLR_amended( idx2 ) = ...
% norm( data_in.Reco_HBLR( idx2 ), 2 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2010
% 1 period with abnormally high respiration this year. Amend
% as per Marcy's request
idx = DOYidx( 184.25 ) : DOYidx( 188.7 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 2.5 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2012
% 1 period with abnormally high respiration this year. Amend
% as per Marcy's request
idx = DOYidx( 277.2 ) : DOYidx( 279.95 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 2.5 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2011
% the gapfiller/partitioner put in large RE and GPP spike between
% days 335 and 360 - replace the GPP with that from days 306.25 to
% 316, recycled to the appropriate length.
% Commenting this because the gapfiller no longer does this, so
% this code actually reduces what may be a valuable spike now.
% GEM 5/13/2015
% fill_idx = DOYidx( 306.25 ) : DOYidx( 316 );
% replace_idx = DOYidx( 335 ) : DOYidx( 360 );
% filler = data_in.Reco_HBLR( fill_idx );
% filler = repmat( filler, 3, 1 );
% filler = filler( 1 : numel( replace_idx ) );
% data_amended.Reco_HBLR( replace_idx ) = filler;
end
case {UNM_sites.PJ, UNM_sites.TestSite}
switch yr
% case 2009
% % 1 period with abnormally high respiration this year. Amend
% % as per Marcy's request
% idx = DOYidx( 178.25 ) : DOYidx( 182 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 2.75 );
% dfig = plot_amended( data_in, data_amended, ...
% 'Reco_HBLR', site, yr );
case 2011
% 2 periods with abnormally high respiration this year. Amend
% as per Marcy's request
% idx = DOYidx( 241.25 ) : DOYidx( 246.8 );
% data_amended.Reco_HBLR_amended( idx ) = ...
% norm( data_in.Reco_HBLR( idx ), 3.5 );
idx2 = DOYidx( 349 ) : DOYidx( 356.75 );
data_amended.Reco_HBLR_amended( idx2 ) = ...
norm( data_in.Reco_HBLR( idx2 ), 3 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
case 2015
% 1 periods with abnormally high respiration this year.
idx = DOYidx( 7.25 ) : DOYidx( 14.95 );
data_amended.Reco_HBLR_amended( idx ) = ...
norm( data_in.Reco_HBLR( idx ), 1.85 );
dfig = plot_amended( data_in, data_amended, ...
'Reco_HBLR', site, yr );
end
end
flag = repmat( false, height( data_amended ), 1 );
flag( data_amended.Reco_HBLR_amended ~= data_in.Reco_HBLR ) = true;
data_amended.amended_flag = flag;
function data_norm = norm( in, norm_to_max )
minval = min( in );
maxval = norm_to_max;
data_norm = normalize_vector(in, minval, maxval );
function fig = plot_amended( in, amended, varname, site, yr )
fig = figure( 'Name', ...
sprintf( '%s %d Amendments to gapfill/partitioning', ...
get_site_name( site ), yr ));
varname_amended = [ varname '_amended' ];
doy = in.timestamp - datenum( yr, 1, 0);
plot( doy, in.NEE_f, ':', 'Color', [0.7, 0.7, 0.7]);
hold on;
plot( doy, in.( varname ), '.r');
plot( doy, amended.( varname_amended ), '.b');
varname = strrep( varname, '_', '\_' );
legend( 'NEE_f', varname, [ 'Amended ' varname ]);