forked from gremau/NMEG_FluxProc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfill_30min_flux_processor.m
954 lines (844 loc) · 35.5 KB
/
fill_30min_flux_processor.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
%Program to read 30-min data in from flux_all files, make corrections, and
%write the corrected fluxes back to the flux_all files. This is used only
%when the ts data are not available for time periods but the 30-min data
%are
%Written by John DeLong summer 2008
% Edited by Mike Fuller, July 2011
% This version was edited to add the 'New GLand' site to the list of sites,
% fix a faulty block of 'if-else' statements that used incorrect logical
% flow and unecessary comparison statements (i.e. '==1'), and to add
% exception handling for a incorrectly formed input file (xls file)and when
% NANs are encountered for date/time.
% Further updated by Timothy W. Hilton, Sep 2011 to add updated angles and
% instrument height for PJ girdle site.
%UNM_30min_flux_processor_v2.1
function data_out = fill_30min_flux_processor( data_in, ...
sitecode, year, ...
first_row, last_row, ...
varargin )
[ this_year, ~, ~ ] = datevec( now );
args = inputParser;
args.addRequired( 'data_in', @(x) isa( x, 'dataset' ) );
args.addRequired( 'sitecode', @(x) ( isintval( x ) | ...
isa( x, 'UNM_sites' ) ) );
args.addRequired( 'year', @(x) ( isintval( x ) & ( x >= 2006 ) & ...
( x <= this_year ) ) );
args.addRequired( 'first_row', @(x) isintval( x ) );
args.addRequired( 'last_row', @(x) isintval( x ) );
args.addParameter( 'write_file', false, @islogical );
args.parse( data_in, sitecode, year, first_row, last_row, varargin{ : } );
data_in = args.Results.data_in;
sitecode = args.Results.sitecode;
year = args.Results.year;
first_row = args.Results.first_row;
last_row = args.Results.last_row;
write_file = args.Results.write_file;
% MF:
% Flux-All File Columns used to index the input data range.
% data1c1-data1c2 = TOA5 Data Section of Flux_All file
% data2c1-data2c2 = MATLAB Processed Section of Flux_All file
% (the index of these columns in the flux-all file differs among sites and
% years):
%
% timestamp_col = "TOA5 Timestamp" column
% bad_variance_col = "Bad Variance" column
% data1c1 = "Fc_wpl" column (corrected carbon flux)
% data1c2 = "rain_Tot" (total rain precipitation)
% data2c1 = "jday" (Julian day)
% data2c2 = "w_mean" (last column of "MATLAB processed" section)
if write_file
newfile_ext = '30minfill';
end
if sitecode == 1
site = 'GLand';
z_CSAT = 3.2; sep2 = 0.191; angle = 28.94; h_canopy = 0.25;
timestamp_col = 'CG';
bad_variance_col = 'BP';
if year == 2007
timestamp_col = 'CG';
bad_variance_col = 'BP';
data1c1 = 'CH';
data1c2 = 'IL';
data2c1 = 'J';
data2c2 = 'BQ';
cov_Ux_Ux = -9999; % next three lines added by MF
cov_Uy_Uy = -9999;
cov_Uz_Uz = -9999;
else % added by MF
timestamp_col = 'BW';
bad_variance_col = 'BP';
data1c1 = 'BX';
data1c2 = 'IC';
data2c1 = 'J';
data2c2 = 'BU';
cov_Ux_Ux = -9999;
cov_Uy_Uy = -9999;
cov_Uz_Uz = -9999;
end
elseif sitecode == 2
site = 'SLand';
z_CSAT = 3.2; sep2 = 0.134; angle = 11.18; h_canopy = 0.8;
timestamp_col = 'CG';
bad_variance_col = 'BP';
data1c1 = 'CH';
data1c2 = 'IL';
data2c1 = 'J';
data2c2 = 'BQ';
cov_Ux_Ux = -9999; % this line added by MF
elseif sitecode == 3
site = 'JSav';
z_CSAT = 10.35; sep2 = .2; angle = 25; h_canopy = 3;
if year == 2009 || year == 2010
timestamp_col = 'BW';
bad_variance_col = 'BP';
data1c1 = 'BX';
data1c2 = 'IE';
data2c1 = 'J';
data2c2 = 'BU';
end
elseif sitecode == 4
site = 'PJ';
z_CSAT = 8.2; sep2 = .143; angle = 19.3; h_canopy = 4;
if year == 2009
timestamp_col = 'CG';
bad_variance_col = 'BX';
elseif year == 2010
timestamp_col = 'BW';
bad_variance_col = 'BP';
data1c1 = 'BX';
data1c2 = 'EZ';
data2c1 = 'J';
data2c2 = 'BU';
end
elseif sitecode == 5
z_CSAT = 24.02; sep2 = 0.15; angle = 15.266; h_canopy = 17.428;
site = 'PPine';
if year == 2009
timestamp_col = 'CG';
bad_variance_col = 'BP';
data1c1 = 'CH';
data1c2 = 'GF';
data2c1 = 'J';
data2c2 = 'BU';
elseif year == 2010
timestamp_col = 'CG';
bad_variance_col = 'BP';
data1c1 = 'CH';
data1c2 = 'GG';
data2c1 = 'J';
data2c2 = 'BU';
elseif year == 2011
timestamp_col = 'BW';
bad_variance_col = 'BP';
data1c1 = 'BX';
data1c2 = 'FW';
data2c1 = 'J';
data2c2 = 'BU';
end
elseif sitecode == 6
site = 'MCon';
z_CSAT = 23.9; sep2 = 0.375; angle = 71.66; h_canopy = 16.56;
if year == 2009
timestamp_col = 'CG';
bad_variance_col = 'BP';
data1c1 = 'CH';
data1c2 = 'GF';
data2c1 = 'J';
data2c2 = 'BU';
end
if year == 2010
timestamp_col = 'CG';
bad_variance_col = 'BP';
data1c1 = 'CH';
data1c2 = 'GI';
data2c1 = 'J';
data2c2 = 'BU';
end
elseif sitecode == 7
site = 'TX';
z_CSAT = 8.75; sep2 = .2; angle = 25; h_canopy = 2.5;
if year == 2008
timestamp_col = 'BV';
bad_variance_col = 'BP';
data1c1 = 'BW';
data1c2 = 'FC';
data2c1 = 'J';
data2c2 = 'BU';
elseif year == 2009
timestamp_col = 'CG';
bad_variance_col = 'BX';
data1c1 = 'CH';
data1c2 = 'GP';
data2c1 = 'J';
data2c2 = 'BQ';
end
elseif sitecode == 8
site = 'TX_forest';
timestamp_col = 'BV';
bad_variance_col = 'BP';
z_CSAT = 15.24; sep2 = .11; angle = 13.79; h_canopy = 7.62;
if year == 2008
timestamp_col = 'CG';
bad_variance_col = 'BX';
data1c1 = 'CH';
data1c2 = 'EN';
data2c1 = 'J';
data2c2 = 'BQ';
elseif year == 2009
timestamp_col = 'CG';
bad_variance_col = 'BX';
data1c1 = 'CH';
data1c2 = 'EN';
data2c1 = 'J';
data2c2 = 'BQ';
end
elseif sitecode == 9
site = 'TX_grassland';
z_CSAT = 4; sep2 = .19; angle = 31.59; h_canopy = 1;
timestamp_col = 'BV';
bad_variance_col = 'BP';
if year == 2008
timestamp_col = 'CG';
bad_variance_col = 'BX';
data1c1 = 'CH';
data1c2 = 'ET';
data2c1 = 'J';
data2c2 = 'BQ';
elseif year == 2009
timestamp_col = 'CG';
bad_variance_col = 'BX';
data1c1 = 'CH';
data1c2 = 'EN';
data2c1 = 'J';
data2c2 = 'BQ';
end
elseif sitecode == 10
% 5 Sep 2011 - changed z_CSAT from 5.5 to 6.5 (as per Marcy's instruction)
site = 'PJ_girdle';
z_CSAT = 5.5; sep2 = 0.194; angle = 13.3; h_canopy = 4;
if year == 2009
timestamp_col = 'BV';
bad_variance_col = 'BP';
elseif year == 2010
timestamp_col = 'BW';
bad_variance_col = 'BP';
data1c1 = 'BX';
data1c2 = 'FE';
data2c1 = 'J';
elseif year == 2011
if first_row < 10660 & last_row >= 10660
ME = MException('UNM_30min_flux_processor', 'PJgirdle instrument height and angles changed on 11 Aug 2011. Please do not call UNM_30min_flux_processor for dates spanning 11 Aug 2011.');
throw(ME);
end
if first_row >= 10660
z_CSAT = 6.5; sep2 = 0.194; angle = 16.71; h_canopy = 4;
end
elseif year >= 2012
z_CSAT = 6.5; sep2 = 0.194; angle = 16.71; h_canopy = 4;
end
elseif sitecode == 11 % added July 2011 by MF
site = 'New_GLand';
z_CSAT = 3.2; sep2 = 0.142; angle = 21.67; h_canopy = 0.25;
if year == 2010 || year == 2011
timestamp_col = 'BW';
bad_variance_col = 'BP';
data1c1 = 'BX';
data1c2 = 'HF';
data2c1 = 'J';
data2c2 = 'BU';
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set up files and read in data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ds = data_in;
[ year2 month day hour minute second ] = datevec( ds.timestamp );
timestamp = ds.timestamp;
%ds.timestamp = [];
headertext = ds.Properties.VarNames;
data = double( ds( first_row:last_row, : ) );
%bad_v = num; % assign bad_variance array
jday = datenum(timestamp) - datenum( year2(1), 1, 0 );
jday = jday( first_row:last_row );
ncol = size(data,2); % find number of columns for use in locating headers below
nrows = size(data,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 30-minute data vary in column and header name across sites and years,
% so we are using this string comparison function to locate data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Edited from original if-else block (MF)
% Note: this block should also contain 'else' statements for the FALSE case
% of each evaluation
for i=1:ncol
if strcmp('Ts_Avg',headertext(i)) || strcmp('Ts_mean',headertext(i)) || strcmp('Ts_a',headertext(i))
Ts_meanC = data(:,i); % read in in C
Ts_meanK = data(:,i) + 273.15; % converted to K
end
if strcmp('wnd_dir_compass',headertext(i)) || strcmp('cmpss_dir',headertext(i))
wind_direction = data(:,i); % read in in degrees and just written back out
end
if strcmp('rslt_wnd_spd',headertext(i)) || strcmp('wnd_spd_a',headertext(i))
wind_speed = data(:,i); % read in in m per s and just written back out
end
if strcmp('cov_Ux_Ts',headertext(i)) || strcmp('cov_Ts_Ux',headertext(i)) || strcmp('Ux_Ts',headertext(i))
cov_Ts_Ux = data(:,i); % this is cov b/w t and u
end
if strcmp('cov_Uy_Ts',headertext(i)) || strcmp('cov_Ts_Uy',headertext(i)) || strcmp('Uy_Ts',headertext(i))
cov_Ts_Uy = data(:,i); % this is cov b/w t and y
end
if strcmp('cov_Uz_Ts',headertext(i)) || strcmp('cov_Ts_Uz',headertext(i)) || strcmp('Uz_Ts',headertext(i))
cov_Ts_Uz = data(:,i); % this is cov b/w t and w
end
if strcmp('cov_Uz_Uz',headertext(i)) || strcmp('stdev_Uz',headertext(i))
cov_Uz_Uz = data(:,i); % this is vertical wind varianc
end
if strcmp('cov_Ux_Ux',headertext(i)) || strcmp('stdev_Ux',headertext(i))
cov_Ux_Ux = data(:,i); % this is along wind variance
end
if strcmp('cov_Uy_Uy',headertext(i)) || strcmp('stdev_Uy',headertext(i))
cov_Uy_Uy = data(:,i); % this is across wind variance
end
if strcmp('co2_Avg',headertext(i)) || strcmp('co2_mean',headertext(i))...
|| strcmp('co2_a',headertext(i)) || strcmp('co2_mean_Avg',headertext(i))
co2_mean = (data(:,i))./44; % read in in mg per m^3 but converted to mmol per m^3
end
if strcmp('cov_Ux_co2',headertext(i)) || strcmp('cov_co2_Ux',headertext(i)) || strcmp('Ux_co2',headertext(i))
cov_co2_Ux = data(:,i); % read in in mg per m^2 per s
end
if strcmp('cov_Uy_co2',headertext(i)) || strcmp('cov_co2_Uy',headertext(i)) || strcmp('Uy_co2',headertext(i))
cov_co2_Uy = data(:,i); % read in in mg per m^2 per s
end
if strcmp('cov_Uz_co2',headertext(i)) || strcmp('cov_co2_Uz',headertext(i)) || strcmp('Uz_co2',headertext(i))
cov_co2_Uz = data(:,i); % read in in mg per m^2 per s
end
if strcmp('h2o_Avg',headertext(i)) || strcmp('h2o_mean',headertext(i))...
|| strcmp('h2o_a',headertext(i)) || strcmp('h2o_mean_Avg',headertext(i))
h2o_Avg = data(:,i)./0.018; % read in in g per m^3 and converted to mmol per m^3
end
if strcmp('cov_Ux_h2o',headertext(i)) || strcmp('cov_h2o_Ux',headertext(i)) || strcmp('Ux_h2o',headertext(i))
cov_h2o_Ux = data(:,i)./0.018; % read in in g per m^2 per s and converted to mmol per m^2 per s
end
if strcmp('cov_Uy_h2o',headertext(i)) || strcmp('cov_h2o_Uy',headertext(i)) || strcmp('Uy_h2o',headertext(i))
cov_h2o_Uy = data(:,i)./0.018; % read in in g per m^2 per s and converted to mmol per m^2 per s
end
if strcmp('cov_Uz_h2o',headertext(i)) || strcmp('cov_h2o_Uz',headertext(i)) || strcmp('Uz_h2o',headertext(i))
cov_h2o_Uz = data(:,i)./0.018; % read in in g per m^2 per s and converted to mmol per m^2 per s
end
if strcmp('Ux_Avg',headertext(i)) || strcmp('Ux_a',headertext(i))
umean = data(:,i);
disp('INITIALIZED UMEAN');
end
if strcmp('Uy_Avg',headertext(i)) || strcmp('Uy_a',headertext(i))
vmean = data(:,i);
end
if strcmp('Uz_Avg',headertext(i)) || strcmp('Uz_a',headertext(i))
wmean = data(:,i);
end
if strcmp('cov_Ux_Uy',headertext(i)) || strcmp('Ux_Uy',headertext(i))
uv = data(:,i); %cov_Ux_Uy aka 12 , 21, aka uv,vu
end
if strcmp('cov_Uz_Ux',headertext(i)) || strcmp('cov_Ux_Uz',headertext(i)) || strcmp('Uz_Ux',headertext(i))
uw = data(:,i); %cov_Ux_Uz aka 13 , 31, aka uw,wu
end
if strcmp('cov_Uz_Uy',headertext(i)) || strcmp('cov_Uy_Uz',headertext(i)) || strcmp('Uz_Uy',headertext(i))
vw = data(:,i); %cov_Uy_Uz aka 23 , 32, aka vw,wv
end
if strcmp('press_Avg',headertext(i)) || strcmp('press_mean',headertext(i)) || strcmp('press_a',headertext(i))
press_mean = data(:,i); % read in in kPa
end
if strcmp('RH',headertext(i))
rH = 0.01.*data(:,i); % read in in kPa
end
end
% exception handling statement added by MF
try
uvwmean = [umean vmean wmean]; % pool winds for use below
catch err
error('Could not initialize wind parameters; check TOA5 Timestamp column of excel file for missing date values');
end
h2o_Avg = h2o_Avg - 195;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dry air corrections
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate the partial pressure of h2o vapor. Use the sonic temperaure to
% approximate the dry air temperature. This is shown below to give a maximum
% error (for this day) in the partial pressure of 0.95 percent
%
% Pw (KPa) = (n/V) * R_u * T * 10e-6%
% - n/V = LI7500 output in mmol/m^3 wet air
% - R_u = 8.314 J/mol K
% - T = dry air temp in K
% - 10e-6 = converts mmol to mol and Pa to KPa
PW = 1e-6.*8.314.*h2o_Avg.*Ts_meanK;
% calculate dry air temperature from sonic temperature using Gaynor eq:
Td = Ts_meanK./(1 + 0.32.*PW./press_mean);
% Make an iteration on the calculation of Pw, using the dry air temperature
PW = 1e-6.*8.314.*h2o_Avg.*Td;
% recalculate dry temperature w/new pressure
TD = Ts_meanK./(1 + 0.321.*PW./press_mean);
% calculate wet air molar density (mol wet air / m^3 wet air)
% (n/V)_a = P/R_u/T
% = 1e3/8.314*P/T
rhomtotal = (1e3./8.314).*press_mean./TD;
% calculate mol fraction of water vapor (mmol h2o/mol moist air) in wet air
h2owet = h2o_Avg./rhomtotal;
% calculate mol fraction of co2 (umol co2/mol moist air) in moist air
co2wet = 1e3.*co2_mean./rhomtotal;
% Assume wet air and the partial pressure of dry air is the output of the
% irga minus the vapor pressure
Pa = press_mean - PW;
% calculate dry air molar density (mol dry air / m^3 wet air)%
% (n/V)_a = Pa/R_u/T%
% = 1e3 / 8.314 * Pa /T
rhomdry = (1e3/8.314).*Pa./TD;
rhomwater = rhomtotal - rhomdry;
rhotot = rhomdry.*29./1000 + rhomwater.*18./1000;
% calculate mol fraction of water vapor (mmol h2o/mol dry air) in dry air
h2odry = h2o_Avg./rhomdry;
% calculate mol fraction of co2 (umol co2/mol dry air) in dry air
co2dry = 1e3.*co2_mean./rhomdry;
% calculate relative humidity
meanTinC = TD-273.15;
es = 0.611 .* exp(17.502.*meanTinC./(meanTinC + 240.97));
rH = PW./es;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Unit corrections for co2 and h2o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
co2_mean_out = co2_mean.*1000./rhomdry;
h2o_Avg_out = h2o_Avg./rhomdry;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Planar rotation, massman, and wpl corrections, run each row at a time
% through a for looop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:nrows
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1 Planar rotation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
USTAR(i) = sqrt(sqrt(uw(i)^2 + vw(i)^2)); % calculate unrotated ustar
speed(i) = sqrt((umean(i)^2) + (vmean(i)^2) + (wmean(i)^2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check that you have good data on the basis of speed < 20
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if speed(i) <20
% enter planar coefficients broken down by various factors
if sitecode == 1
if speed(i) >= 5
b0 = 0.152528949;
b1 = -0.00082989;
b2 = 0.002517913;
k(1) = 0.000829887;
k(2) = -0.002517904;
k(3) = 0.999996486;
else
b0 = 0.025221417;
b1 = 0.011187435;
b2 = 0.005053646;
k(1) = -0.011186592;
k(2) = -0.005053265;
k(3) = 0.999924659;
end
elseif sitecode == 2 % these are for shrubland
if speed(i) >= 5
b0 = 0.153116813;
b1 = 0.016330935;
b2 = -0.018475587;
k(1) = -0.016325972;
k(2) = 0.018469973;
k(3) = 0.999696115;
else
b0 = 0.046197667;
b1 = 0.024851316;
b2 = -0.018716161;
k(1) = -0.024839298;
k(2) = 0.01870711;
k(3) = 0.99951641;
end
elseif sitecode == 3 % these are for juniper-savanna
if speed(i) >= 5
b0 = 0.081104622;
b1 = -0.005862329;
b2 = -0.015991732;
k(1) = 0.005861479;
k(2) = 0.015989413;
k(3) = 0.99985498;
else
b0 = 0.02499662;
b1 = -0.002888242;
b2 = -0.013527774;
k(1) = 0.002887966;
k(2) = 0.01352648;
k(3) = 0.999904342;
end
elseif sitecode == 4
if speed(i) >= 5
b0 = 0.152528949;
b1 = -0.00082989;
b2 = 0.002517913;
k(1) = 0.000829887;
k(2) = -0.002517904;
k(3) = 0.999996486;
else
b0 = 0.025221417;
b1 = 0.011187435;
b2 = 0.005053646;
k(1) = -0.011186592;
k(2) = -0.005053265;
k(3) = 0.999924659;
end
elseif sitecode == 5
if speed(i) >= 5
b0 = -0.201583097;
b1 = 0.039964498;
b2 = 0.042832557;
k(1) = -0.039896099;
k(2) = -0.04275925;
k(3) = 0.998288509;
else
b0 = 0.008839609;
b1 = 0.020435491;
b2 = 0.025895171;
k(1) = -0.020424381;
k(2) = -0.025881093;
k(3) = 0.999456359;
end
elseif sitecode == 6
if speed(i) >= 5
b0 = 0.259543188;
b1 = -0.004703906;
b2 = 0.014195398;
k(1) = 0.00470338;
k(2) = -0.014193811;
k(3) = 0.999888201;
else
b0 = 0.079961079;
b1 = -0.024930957;
b2 = 0.044809422;
k(1) = 0.024898245;
k(2) = -0.044750626;
k(3) = 0.998687869;
end
elseif sitecode == 7 && year == 2005 && month(1) < 5 % use one set of values for
% first seven months, not separated out by windspeed, then use the same values as 2006
b0 = 0.024873451;
b1 = 0.002279925;
b2 = 0.002839777;
k(1) = -0.00227991;
k(2) = -0.002839758;
k(3) = 0.999993369;
elseif sitecode == 7 && year == 2005 && month(1) >= 5 % latter half of 2005
% use same as 2006
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year == 2006 % all of 2006 looks pretty consistent, use one set of data
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year == 2007 && month(1) < 3 % first 2 months of 2007
% use same as 2006
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year == 2007 && month(1) == 3 || sitecode == 7 && year == 2007 && month(1) == 4
% March and April 2007 has their own set of coefficients
b0 = 0.064455667;
b1 = 0.001620006;
b2 = 0.004444167;
k(1) = -0.001619988;
k(2) = -0.004444117;
k(3) = 0.999988813;
elseif sitecode == 7 && year == 2007 && month(1) >= 5 %after that, use a new set of
% coefficients calculated with only the data in the last 6 months of 2007
b0 = -0.007905583;
b1 = 0.012986531;
b2 = -0.000801434;
k(1) = -0.012985432;
k(2) = 0.000801367;
k(3) = 0.999915365;
elseif sitecode == 7 && year == 2008 || year ==2009% Using the same as the latter part of 2007
b0 = -0.007905583;
b1 = 0.012986531;
b2 = -0.000801434;
k(1) = -0.012985432;
k(2) = 0.000801367;
k(3) = 0.999915365;
elseif sitecode == 8 % TX_forest
if wind_direction(i) >= 0 && wind_direction(i) <= 60
b0 = 0.224838191;
b1 = 0.051189541;
b2 = -0.031249502;
k(1) = -0.046221527;
k(2) = 0.014738558;
k(3) = 0.998206387;
elseif wind_direction(i) > 60 && wind_direction(i) <= 210
b0 = 0.094117303;
b1 = 0.03882402;
b2 = 0.011170481;
k(1) = -0.038792377;
k(2) = -0.011161377;
k(3) = 0.999184955;
elseif wind_direction(i) > 210 && wind_direction(i) <= 270
b0 = 0.070326918;
b1 = -0.026290012;
b2 = -0.009114614;
k(1) = 0.02627984;
k(2) = 0.009111088;
k(3) = 0.999613104;
elseif wind_direction(i) > 270 && wind_direction(i) <= 360
b0 = 0.215938294;
b1 = 0.123314215;
b2 = 0.000787889;
k(1) = -0.122387155;
k(2) = -0.000781966;
k(3) = 0.992482127;
end
elseif sitecode == 9 % TX_grassland
b0 = 0.017508885;
b1 = -0.005871475;
b2 = 0.017895419;
k(1) = 0.005870434;
k(2) = -0.017892246;
k(3) = 0.999822687;
elseif sitecode == 10 % pinyon juniper - girdled
% if speed >= 5
% b0 = -0.01340991;
% b1 = -0.01848391;
% b2 = 0.01754080;
% k(1) = 0.01847792;
% k(2) =-0.01753510;
% k(3) = 0.99967549;
% else
% b0 = -0.05509318;
% b1 = -0.01227282;
% b2 = 0.01297221;
% k(1) = 0.01227087;
% k(2)= -0.01297014;
% k(3) = 0.99984058;
% end
if speed >= 5
b0 = -0.0344557038769674;
b1 = -0.0128424391588686;
b2 = 0.0160405052917033;
k(1) = 0.012839728810921;
k(2) =-0.0160371200040598;
k(3) = 0.99978895380277;
else
b0 = -0.0473758714816513;
b1 = -0.0128600161662158;
b2 = 0.0101393306242113;
k(1) = 0.0128582920745777;
k(2)= -0.0101379712841514;
k(3) = 0.99986593394473;
end
elseif sitecode == 11 % New GLand; Values taken from other flux programs, July 2011 (MF)
if speed(i) >= 5
b0 = 0.0430287;
b1 = 0.351210;
b2 = -0.0336278;
k(1) = -0.0350796;
k(2) = 0.0335881;
k(3) = 0.9988199;
else
b0 = 0.0430287;
b1 = 0.351210;
b2 = -0.0336278;
k(1) = -0.0350796;
k(2) = 0.0335881;
k(3) = 0.9988199;
end
end
% determine unit vectors i,j (parallel to new coordinate x and y axes)
j(i,:) = cross(k,uvwmean(i,:));
j(i,:) = j(i,:)/(sum(j(i,:).*j(i,:)))^0.5;
l(i,:) = cross(j(i,:),k); % changed i to l here to be compatible with for loop
% rotating co2 flux
if sitecode==7
R=8.3143e-3;
hh=(1./(R.*(Ts_meanK(i)./press_mean(i)).*1000)).*44; % This is the conversion from mumol mol to mg m3 for CO2 for TX
cov_co2_Ux(i)=cov_co2_Ux(i).*hh;
cov_co2_Uy(i)=cov_co2_Uy(i).*hh;
cov_co2_Uz(i)=cov_co2_Uz(i).*hh;
end
C(i,:) = [cov_co2_Ux(i) cov_co2_Uy(i) cov_co2_Uz(i)];
uxc_rot(i) = sum(l(i,:).*C(i,:));
vxc_rot(i) = sum(j(i,:).*C(i,:));
wxc_rot(i) = sum(k.*C(i,:));
flux_co2(i) = wxc_rot(i); % in mg per m^2 s, original flux_co2(i)covariance only rotated
% flux_co2(i) = ((flux_co2(i)./1000)./44).*1000000; % mumols for regression
% flux_co2(i) = (flux_co2(i).*1.1623)-0.096; % Correction based on regression in Futher_flux_corrections .xls file
% flux_co2(i) = (flux_co2(i)./1000000)*44*1000; % back to mg
% rotating sensible heat flux
cov_Ts_Ux(i);
cov_Ts_Uy(i);
cov_Ts_Uz(i);
H(i,:) = [cov_Ts_Ux(i) cov_Ts_Uy(i) cov_Ts_Uz(i)];
uxT_rot(i) = sum(l(i,:).*H(i,:));
vxT_rot(i) = sum(j(i,:).*H(i,:));
wxT_rot(i) = sum(k.*H(i,:));
wTrot_dry(i) = wxT_rot(i)/(1 + 0.321*PW(i)/press_mean(i)); % take vertical component and convert it to dry air
cpd = 1005;
HSdry(i) = 28.966/1000*rhomdry(i)*cpd*wTrot_dry(i);
HSwet(i) = 28.966/1000*rhomdry(i)*cpd*wxT_rot(i);
HSwetwet(i) = 28.966/1000*rhomtotal(i)*cpd*wxT_rot(i);
% rotating water and calculating latent heat flux from that
if sitecode==7
R=8.3143e-3;
hh=(1./(R.*(Ts_meanK(i)./press_mean(i)))).*0.018; % This is the conversion from mumol mol to mg m3 for CO2 for TX
cov_h2o_Ux(i)=cov_h2o_Ux(i).*hh;
cov_h2o_Uy(i)=cov_h2o_Uy(i).*hh;
cov_h2o_Uz(i)=cov_h2o_Uz(i).*hh;
end
W(i,:) = [cov_h2o_Ux(i) cov_h2o_Uy(i) cov_h2o_Uz(i)];
uxh2o_rot(i) = sum(l(i,:).*W(i,:));
vxh2o_rot(i) = sum(j(i,:).*W(i,:));
wxh2o_rot(i) = sum(k.*W(i,:));
flux_h2o(i) = wxh2o_rot(i); % flux still in mmol per m^2 per s
Lv = (2.501-0.00237*(TD(i)-273.15))*10^3; % calculate latent heat of vaporization
flux_HL(i) = 18.016/1000*Lv*wxh2o_rot(i); % calculate latent heat flux from water flux and Lv
% flux_HL(i) = (flux_HL(i).*1.1484)+3.6589; % Correction based on regression in Futher_flux_corrections .xls file
% flux_h2o(i) = ((flux_HL(i)./Lv)./18.016).*1000;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2 Massman
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate z and L
z = z_CSAT/(0.7*h_canopy);
L = -((USTAR(i))^3*TD(i))/(0.4 * 9.81 * cov_Ts_Uz(i));
% CALL MASSMAN
[X_op_C,X_op_H,X_T,zoL]= UNM_massman(z,L,uvwmean(i,:),sep2,angle);
HSdry_massman(i) = HSdry(i)./X_T;
flux_h2o_massman(i) = flux_h2o(i)/X_op_H; % flux still in mmol per m^2 per s
flux_co2_massman(i) = (flux_co2(i)/X_op_C)*1000/44; %flux still in mg per m^2 s converted to umol per m^2 s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3 WPL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate densities in grams/m^3 moist air
rhoa(i) = rhomdry(i)*28.966;
rhov(i) = (rhomtotal(i)-rhomdry(i))*18.016;
rhoc(i) = co2_mean(i)*44/1000;
rhoa_out(i) = rhoa(i)/28.966;
rhov_out(i) = rhov(i)/18.016;
rhoc_out(i) = rhoc(i)/44;
mu = 28.966/18.016; % g per mol divided by g per mol >> unitless
sigma = rhov(i)/rhoa(i); % g per m^3 divided by g per m^3 >> unitless
% make WPL corrections for CO2 fluxes
Fc_raw(i) = flux_co2(i).*1000./44; % convert rotated co2 flux back to umol per m^3
Fc_water_term(i) = mu*rhoc(i)/rhoa(i)*flux_h2o(i)*0.018*(10^6/44);
Fc_heat_term_massman(i) = (1+mu*sigma)*rhoc(i)/TD(i)*HSdry_massman(i)/28.966*1000/cpd/rhomdry(i)*(10^6/44);
Fc_corr_massman_ourwpl(i) = flux_co2_massman(i) + Fc_water_term(i) + Fc_heat_term_massman(i);
% make WPL corrections for H2O fluxes
E_water_term(i) = (1+mu*sigma)*flux_h2o(i)*0.018*(10^3/18.016);
E_heat_term_massman(i) = (1+mu*sigma)*rhov(i)/TD(i)*wTrot_dry(i)*(10^3/18.016);
%flux_h20_massman_wpl_heat(i) = (1+mu*sigma)*rhov(i)/TD(i)*HSdry_massman(i)/28.966*1000/cpd/rhomdry(i)*(10^3/18.016);
E_corr_massman(i) = E_water_term(i) + E_heat_term_massman(i);
% make WPL corrections for latent heat fluxes
flux_HL_massman(i) = 18.016/1000*Lv*flux_h2o_massman(i);
flux_HL_wpl_massman(i) = 18.016/1000*Lv*E_corr_massman(i);
% need this for writing out to spreadsheet - see below
blank(i) = NaN;
else % Else you have bad data
rH(i) = NaN;
USTAR(i) = NaN;
wTrot_dry(i) = NaN;
co2_mean_out(i) = NaN;
h2o_Avg_out(i) = NaN;
Fc_raw(i) = NaN;
flux_co2_massman(i) = NaN;
Fc_water_term(i) = NaN;
Fc_heat_term_massman(i) = NaN;
Fc_corr_massman_ourwpl(i) = NaN;
flux_h2o(i) = NaN;
flux_h2o_massman(i) = NaN;
E_water_term(i) = NaN;
E_heat_term_massman(i) = NaN;
E_corr_massman(i) = NaN;
HSdry(i) = NaN;
HSwet(i) = NaN;
HSwetwet(i) = NaN;
HSdry_massman(i) = NaN;
flux_HL(i) = NaN;
flux_HL_massman(i) = NaN;
flux_HL_wpl_massman(i) = NaN;
rhov(i) = NaN;
rhoa_out(i) = NaN;
rhov_out(i) = NaN;
rhoc_out(i) = NaN;
blank(i) = NaN;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Collect things to write out
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ds.jday( first_row : last_row ) = jday;
ds.u_mean_unrot( first_row : last_row ) = umean;
ds.v_mean_unrot( first_row : last_row ) = vmean;
ds.w_mean_unrot( first_row : last_row ) = wmean;
ds.temp_mean( first_row : last_row ) = Ts_meanC;
ds.tdry( first_row : last_row ) = TD;
ds.wind_direction( first_row : last_row ) = wind_direction;
ds.speed( first_row : last_row ) = wind_speed;
ds.along_wind_velocity_variance( first_row : last_row ) = cov_Ux_Ux;
ds.cross_wind_velocity_variance( first_row : last_row ) = cov_Uy_Uy;
ds.vertical_wind_velocity_variance( first_row : last_row ) = cov_Uz_Uz;
ds.ut_covariance( first_row : last_row ) = cov_Ts_Ux;
ds.uv_covariance( first_row : last_row ) = cov_Ts_Uy;
ds.wt_covariance( first_row : last_row ) = cov_Ts_Uz;
ds.ustar( first_row : last_row ) = USTAR';
ds.CO2_mean( first_row : last_row ) = co2_mean_out;
ds.H2O_mean( first_row : last_row ) = h2o_Avg_out;
ds.Fc_raw( first_row : last_row ) = Fc_raw';
ds.Fc_water_term( first_row : last_row ) = Fc_water_term';
ds.Fc_raw_massman( first_row : last_row ) = flux_co2_massman';
ds.Fc_heat_term_massman( first_row : last_row ) = Fc_heat_term_massman';
ds.Fc_raw_massman_ourwpl( first_row : last_row ) = Fc_corr_massman_ourwpl';
ds.E_raw( first_row : last_row ) = flux_h2o';
ds.E_water_term( first_row : last_row ) = E_water_term';
ds.E_raw_massman( first_row : last_row ) = flux_h2o_massman';
ds.E_heat_term_massman( first_row : last_row ) = E_heat_term_massman';
ds.E_wpl_massman( first_row : last_row ) = E_corr_massman';
ds.SensibleHeat_dry( first_row : last_row ) = HSdry';
ds.SensibleHeat_wet( first_row : last_row ) = HSwet';
ds.SensibleHeat_wetwet( first_row : last_row ) = HSwetwet';
ds.HSdry_massman( first_row : last_row ) = HSdry_massman';
ds.LatentHeat_raw( first_row : last_row ) = flux_HL';
ds.LatentHeat_raw_massman( first_row : last_row ) = flux_HL_massman';
ds.LatentHeat_wpl_massman( first_row : last_row ) = flux_HL_wpl_massman';
ds.rhoa_dry_air_molar_density( first_row : last_row ) = rhoa_out';
ds.rhov_dry_air_molar_density( first_row : last_row ) = rhov_out';
ds.rhoc_dry_air_molar_density( first_row : last_row ) = rhoc_out';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Write fluxes back out to flux_all file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data_out = ds;
if year >= 2009 && write_file
ds.timestamp = [];
cdp = card_data_processor( UNM_sites( sitecode ), ...
'date_start', datenum( year, 1, 1 ), ...
'date_end', datenum( year, 12, 31, ...
23, 59, 59 ) );
cdp.write_fluxall( ds, newfile_ext );
elseif year <=2008 && write_file
ds.timestamp = [];
error( ['fluxall xls writeout not implemented for years < 2012 -- TWH, ' ...
'31 Oct 2012' ] );
fileout = filein;
%fileout = 'december_output.xls';
%xlswrite (fileout,DATAOUT,'master',strcat('J',num2str(first_row)));
%disp('Wrote to flux_all file');
for i = 1:nrows
if isnan(bad_v(i))
TO_WRITE(i,:)=DATAOUT(i,:);
else
TO_WRITE(i,:)=DATA_IN(i,:);
end
end
xlswrite (fileout,TO_WRITE,'master',strcat('J',num2str(first_row)));
end