-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExperimentSetting.jl
56 lines (52 loc) · 2.01 KB
/
ExperimentSetting.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
@everywhere global NOASSERT = true
function get_exp_setting(dataset::Symbol)
feature = 0
label = 0
logα = 0
hp = 0
if dataset == :dummydoc
logα = 0.0
hp = MultinomialDir(ones(Float64,1000))
feature = sparse(rand(1:1000,10000),rand(1:500,10000),rand(1:50,10000))
label = rand(1:10,500)
elseif dataset == :nyt1m
logα = 0.0
feature = load(homedir()*"/DATA/nyt-1987-1-feat.jld","features")
label = load(homedir()*"/DATA/nyt-1987-1-label.jld","labels")
hp = MultinomialDir(ones(Float64,size(feature,1)))
elseif dataset == :nyt1y
logα = 0.0
feature = load(homedir()*"/DATA/nyt-1987-feat.jld","features")
label = load(homedir()*"/DATA/nyt-1987-label.jld","labels")
hp = MultinomialDir(ones(Float64,size(feature,1)))
elseif dataset == :nytall
logα = 0.0
feature = load(homedir()*"/DATA/nyt-feat-fil.jld","features")
label = load(homedir()*"/DATA/nyt-label-fil.jld","labels")
hp = MultinomialDir(ones(Float64,size(feature,1)))
elseif dataset == :s
filename = homedir() * "/DATA/synthetic.h5"
feature = HDF5.h5read(filename, "feature")
label = HDF5.h5read(filename, "label")
logα = 0.0
hp = IsotropicGaussian(size(feature,1),10,1)
elseif dataset == :i48
# 48-dim
# sigma of center : 6.885933753345786
# sigma of all : 9.21927155012262
# sigma within class : 6.127468700166469
filename = homedir() * "/DATA/imagenet_xczhang_48.h5"
feature = HDF5.h5read(filename, "feature")
label = HDF5.h5read(filename, "label")
logα = 0.0
hp = IsotropicGaussian(size(feature,1),8,8)
else
error("unknown profile")
assert(false)
end
assert(size(feature, 2) == length(label))
println("Size of Data: ", size(feature))
println("Parameter, logα = ", logα)
isa(hp,IsotropicGaussian) && println("Parameter, hp = ", hp)
return feature,label,logα,hp
end