-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathusmodel_Gaussian.mod
218 lines (191 loc) · 8.09 KB
/
usmodel_Gaussian.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
%/////////////////////////////////////////////////////////////
%//// Model: Smets and Wouters (2007) ////
%//// Author: Willi Mutschler ////
%//// Email: [email protected] ////
%//// Version: August 26, 2016 ////
%/////////////////////////////////////////////////////////////
%----------------------------------------------------------------
% 0. Specify options: User Settings (For other settings and defaults see updateOptions.m
%----------------------------------------------------------------
% Which distribution: 0:for Gaussian, 1:for Student_t
@#define distrib = 0
opt.HOSThirdOrder = 1; % Use third-order statistics, 0: do not include or 1: include
opt.HOSFourthOrder = 1; % User fourth-order statistics, 0: do not include or 1: include
opt.simdata = 1; % compare theoretical statistics with simulated data, 0: no or 1: yes
opt.MCruns = 1000; % Monte Carlo Runs for comparison
opt.numSim = 10000; % Number of observations of simulated data
opt.burnin = 1000; % Initial burnin periods, will be discarded from simulation
opt.antithetic = 1; % 1: Use antithetic shocks and quadratic resampling to reduce Monte Carlo variation
@#if distrib == 1
opt.distrib = 'Student_t'; %multivariate student-t distribution ('Gaussian' is default)
@#endif
%----------------------------------------------------------------
% 1. Declare variables and parameters
%----------------------------------------------------------------
// copy van usmodel_hist_dsge_f19_7_71
var labobs robs pinfobs dy dc dinve dw ewma epinfma zcapf rkf kf pkf cf invef yf labf wf rrf mc zcap rk k pk c inve y lab pinf w r a b g qs ms spinf sw kpf kp ;
varexo ea eb eg eqs em epinf ew ;
varobs dy dc dinve labobs pinfobs dw robs;
parameters curvw cgy curvp constelab constepinf constebeta cmaw cmap calfa
czcap cbeta csadjcost ctou csigma chabb ccs cinvs cfc
cindw cprobw cindp cprobp csigl clandaw
crdpi crpi crdy cry crr
crhoa crhoas crhob crhog crhols crhoqs crhoms crhopinf crhow
ctrend
conster cg cgamma clandap cbetabar cr cpie crk cw cikbar cik clk cky ciy ccy crkky cwhlc cwly ;
@#if distrib == 1
parameters df_studt;
@# endif
%----------------------------------------------------------------
% 2. Calibrate parameter values for simulated series (i.e. true values
%----------------------------------------------------------------
@#if distrib == 1
df_studt = 5;
@# endif
// fixed parameters
ctou=.025;
clandaw=1.5;
cg=0.18;
curvp=10;
curvw=10;
// estimated parameters initialisation
calfa=.24;
cgamma=1.004;
cbeta=.9995;
csigma=1.5;
cpie=1.005;
cfc=1.5;
cgy=0.51;
csadjcost= 6.0144;
chabb= 0.6361;
cprobw= 0.8087;
csigl= 1.9423;
cprobp= 0.6;
cindw= 0.3243;
cindp= 0.47;
czcap= 0.2696;
crpi= 1.488;
crr= 0.8762;
cry= 0.0593;
crdy= 0.2347;
crhoa= 0.9977;
crhob= 0.5799;
crhog= 0.9957;
crhols= 0.9928;
crhoqs= 0.7165;
crhoas=1;
crhoms=0;
crhopinf=0;
crhow=0;
cmap = 0;
cmaw = 0;
// derived from steady state
clandap=cfc;
cbetabar=cbeta*cgamma^(-csigma);
cr=cpie/(cbeta*cgamma^(-csigma));
crk=(cbeta^(-1))*(cgamma^csigma) - (1-ctou);
cw = (calfa^calfa*(1-calfa)^(1-calfa)/(clandap*crk^calfa))^(1/(1-calfa));
cikbar=(1-(1-ctou)/cgamma);
cik=(1-(1-ctou)/cgamma)*cgamma;
clk=((1-calfa)/calfa)*(crk/cw);
cky=cfc*(clk)^(calfa-1);
ciy=cik*cky;
ccy=1-cg-cik*cky;
crkky=crk*cky;
cwhlc=(1/clandaw)*(1-calfa)/calfa*crk*cky/ccy;
cwly=1-crk*cky;
ctrend=(cgamma-1)*100;
conster=(cr-1)*100;
constepinf=(cpie-1)*100;
constelab=0;
%----------------------------------------------------------------
% 3. Declare model equations
%----------------------------------------------------------------
model(linear);
//usmodel_stst;
// flexible economy
0*(1-calfa)*a + 1*a = calfa*rkf+(1-calfa)*(wf) ;
zcapf = (1/(czcap/(1-czcap)))* rkf ;
rkf = (wf)+labf-kf ;
kf = kpf(-1)+zcapf ;
invef = (1/(1+cbetabar*cgamma))* ( invef(-1) + cbetabar*cgamma*invef(1)+(1/(cgamma^2*csadjcost))*pkf ) +qs ;
pkf = -rrf-0*b+(1/((1-chabb/cgamma)/(csigma*(1+chabb/cgamma))))*b +(crk/(crk+(1-ctou)))*rkf(1) + ((1-ctou)/(crk+(1-ctou)))*pkf(1) ;
cf = (chabb/cgamma)/(1+chabb/cgamma)*cf(-1) + (1/(1+chabb/cgamma))*cf(+1) +((csigma-1)*cwhlc/(csigma*(1+chabb/cgamma)))*(labf-labf(+1)) - (1-chabb/cgamma)/(csigma*(1+chabb/cgamma))*(rrf+0*b) + b ;
yf = ccy*cf+ciy*invef+g + crkky*zcapf ;
yf = cfc*( calfa*kf+(1-calfa)*labf +a );
wf = csigl*labf +(1/(1-chabb/cgamma))*cf - (chabb/cgamma)/(1-chabb/cgamma)*cf(-1) ;
kpf = (1-cikbar)*kpf(-1)+(cikbar)*invef + (cikbar)*(cgamma^2*csadjcost)*qs ;
// sticky price - wage economy
mc = calfa*rk+(1-calfa)*(w) - 1*a - 0*(1-calfa)*a ;
zcap = (1/(czcap/(1-czcap)))* rk ;
rk = w+lab-k ;
k = kp(-1)+zcap ;
inve = (1/(1+cbetabar*cgamma))* ( inve(-1) + cbetabar*cgamma*inve(1)+(1/(cgamma^2*csadjcost))*pk ) +qs ;
pk = -r+pinf(1)-0*b +(1/((1-chabb/cgamma)/(csigma*(1+chabb/cgamma))))*b + (crk/(crk+(1-ctou)))*rk(1) + ((1-ctou)/(crk+(1-ctou)))*pk(1) ;
c = (chabb/cgamma)/(1+chabb/cgamma)*c(-1) + (1/(1+chabb/cgamma))*c(+1) +((csigma-1)*cwhlc/(csigma*(1+chabb/cgamma)))*(lab-lab(+1)) - (1-chabb/cgamma)/(csigma*(1+chabb/cgamma))*(r-pinf(+1) + 0*b) +b ;
y = ccy*c+ciy*inve+g + 1*crkky*zcap ;
y = cfc*( calfa*k+(1-calfa)*lab +a );
pinf = (1/(1+cbetabar*cgamma*cindp)) * ( cbetabar*cgamma*pinf(1) +cindp*pinf(-1)
+((1-cprobp)*(1-cbetabar*cgamma*cprobp)/cprobp)/((cfc-1)*curvp+1)*(mc) ) + spinf ;
w = (1/(1+cbetabar*cgamma))*w(-1)
+(cbetabar*cgamma/(1+cbetabar*cgamma))*w(1)
+(cindw/(1+cbetabar*cgamma))*pinf(-1)
-(1+cbetabar*cgamma*cindw)/(1+cbetabar*cgamma)*pinf
+(cbetabar*cgamma)/(1+cbetabar*cgamma)*pinf(1)
+(1-cprobw)*(1-cbetabar*cgamma*cprobw)/((1+cbetabar*cgamma)*cprobw)*(1/((clandaw-1)*curvw+1))*
(csigl*lab + (1/(1-chabb/cgamma))*c - ((chabb/cgamma)/(1-chabb/cgamma))*c(-1) -w)
+ 1*sw ;
r = crpi*(1-crr)*pinf
+cry*(1-crr)*(y-yf)
+crdy*(y-yf-y(-1)+yf(-1))
+crr*r(-1)
+ms ;
a = crhoa*a(-1) + ea;
b = crhob*b(-1) + eb;
g = crhog*(g(-1)) + eg + cgy*ea;
qs = crhoqs*qs(-1) + eqs;
ms = crhoms*ms(-1) + em;
spinf = crhopinf*spinf(-1) + epinfma - cmap*epinfma(-1);
epinfma=epinf;
sw = crhow*sw(-1) + ewma - cmaw*ewma(-1) ;
ewma=ew;
kp = (1-cikbar)*kp(-1)+cikbar*inve + cikbar*cgamma^2*csadjcost*qs ;
// measurment equations
dy=y-y(-1)+ctrend;
dc=c-c(-1)+ctrend;
dinve=inve-inve(-1)+ctrend;
dw=w-w(-1)+ctrend;
pinfobs = 1*(pinf) + constepinf;
robs = 1*(r) + conster;
labobs = lab + constelab;
end;
%----------------------------------------------------------------
% 4. Specify variance of shock processes depending on distribution
%----------------------------------------------------------------
shocks;
@#if distrib == 1
% Student-t distribution
var ea = df_studt/(df_studt-2)*0.4618^2;
var eb = df_studt/(df_studt-2)*1.8513^2;
var eg = df_studt/(df_studt-2)*0.6090^2;
var eqs = df_studt/(df_studt-2)*0.6017^2;
var em = df_studt/(df_studt-2)*0.2397^2;
var epinf = df_studt/(df_studt-2)*0.1455^2;
var ew = df_studt/(df_studt-2)*0.2089^2;
@#else
% Gaussian distribution
var ea = 0.4618^2;
var eb = 1.8513^2;
var eg = 0.6090^2;
var eqs = 0.6017^2;
var em = 0.2397^2;
var epinf = 0.1455^2;
var ew = 0.2089^2;
@#endif
end;
%----------------------------------------------------------------
% 7. Computations
%----------------------------------------------------------------
steady; check;
stoch_simul(order=1,pruning,noprint,nomoments,irf=0);
DispHOS(opt);