-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
317 lines (269 loc) · 12.4 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# sudo cog push r8.im/yael-vinker/clipasso
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
from cog import BasePredictor, Input, Path
import subprocess as sp
import os
import re
import imageio
import matplotlib.pyplot as plt
import numpy as np
import pydiffvg
import torch
from PIL import Image
import multiprocessing as mp
from shutil import copyfile
import argparse
import math
import sys
import time
import traceback
import PIL
import torch.nn as nn
import torch.nn.functional as F
import wandb
from torchvision import models, transforms
from tqdm import tqdm
import config
import sketch_utils as utils
from models.loss import Loss
from models.painter_params import Painter, PainterOptimizer
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.num_iter = 2001
self.save_interval = 100
self.num_sketches = 3
self.use_gpu = True
def predict(
self,
target_image: Path = Input(description="Input image (square, without background)"),
num_strokes: int = Input(description="The number of strokes used to create the sketch, which determines the level of abstraction",default=16),
trials: int = Input(description="It is recommended to use 3 trials to recieve the best sketch, but it might be slower",default=3),
mask_object: int = Input(description="It is recommended to use images without a background, however, if your image contains a background, you can mask it out by using this flag with 1 as an argument",default=0),
fix_scale: int = Input(description="If your image is not squared, it might be cut off, it is recommended to use this flag with 1 as input to automatically fix the scale without cutting the image",default=0),
) -> Path:
self.num_sketches = trials
target_image_name = os.path.basename(str(target_image))
multiprocess = False
abs_path = os.path.abspath(os.getcwd())
target = str(target_image)
assert os.path.isfile(target), f"{target} does not exists!"
test_name = os.path.splitext(target_image_name)[0]
output_dir = f"{abs_path}/output_sketches/{test_name}/"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("=" * 50)
print(f"Processing [{target_image_name}] ...")
print(f"Results will be saved to \n[{output_dir}] ...")
print("=" * 50)
if not torch.cuda.is_available():
self.use_gpu = False
print("CUDA is not configured with GPU, running with CPU instead.")
print("Note that this will be very slow, it is recommended to use colab.")
print(f"GPU: {self.use_gpu}")
seeds = list(range(0, self.num_sketches * 1000, 1000))
losses_all = {}
for seed in seeds:
wandb_name = f"{test_name}_{num_strokes}strokes_seed{seed}"
sp.run(["python", "config.py", target,
"--num_paths", str(num_strokes),
"--output_dir", output_dir,
"--wandb_name", wandb_name,
"--num_iter", str(self.num_iter),
"--save_interval", str(self.save_interval),
"--seed", str(seed),
"--use_gpu", str(int(self.use_gpu)),
"--fix_scale", str(fix_scale),
"--mask_object", str(mask_object),
"--mask_object_attention", str(
mask_object),
"--display_logs", str(int(0))])
config_init = np.load(f"{output_dir}/{wandb_name}/config_init.npy", allow_pickle=True)[()]
args = Args(config_init)
args.cog_display = True
final_config = vars(args)
try:
configs_to_save = main(args)
except BaseException as err:
print(f"Unexpected error occurred:\n {err}")
print(traceback.format_exc())
sys.exit(1)
for k in configs_to_save.keys():
final_config[k] = configs_to_save[k]
np.save(f"{args.output_dir}/config.npy", final_config)
if args.use_wandb:
wandb.finish()
config = np.load(f"{output_dir}/{wandb_name}/config.npy",
allow_pickle=True)[()]
loss_eval = np.array(config['loss_eval'])
inds = np.argsort(loss_eval)
losses_all[wandb_name] = loss_eval[inds][0]
# return Path(f"{output_dir}/{wandb_name}/best_iter.svg")
sorted_final = dict(sorted(losses_all.items(), key=lambda item: item[1]))
copyfile(f"{output_dir}/{list(sorted_final.keys())[0]}/best_iter.svg",
f"{output_dir}/{list(sorted_final.keys())[0]}_best.svg")
target_path = f"{abs_path}/target_images/{target_image_name}"
svg_files = os.listdir(output_dir)
svg_files = [f for f in svg_files if "best.svg" in f]
svg_output_path = f"{output_dir}/{svg_files[0]}"
sketch_res = read_svg(svg_output_path, multiply=True).cpu().numpy()
sketch_res = Image.fromarray((sketch_res * 255).astype('uint8'), 'RGB')
sketch_res.save(f"{abs_path}/output_sketches/sketch.png")
return Path(svg_output_path)
class Args():
def __init__(self, config):
for k in config.keys():
setattr(self, k, config[k])
def load_renderer(args, target_im=None, mask=None):
renderer = Painter(num_strokes=args.num_paths, args=args,
num_segments=args.num_segments,
imsize=args.image_scale,
device=args.device,
target_im=target_im,
mask=mask)
renderer = renderer.to(args.device)
return renderer
def get_target(args):
target = Image.open(args.target)
if target.mode == "RGBA":
# Create a white rgba background
new_image = Image.new("RGBA", target.size, "WHITE")
# Paste the image on the background.
new_image.paste(target, (0, 0), target)
target = new_image
target = target.convert("RGB")
masked_im, mask = utils.get_mask_u2net(args, target)
if args.mask_object:
target = masked_im
if args.fix_scale:
target = utils.fix_image_scale(target)
transforms_ = []
if target.size[0] != target.size[1]:
transforms_.append(transforms.Resize(
(args.image_scale, args.image_scale), interpolation=PIL.Image.BICUBIC))
else:
transforms_.append(transforms.Resize(
args.image_scale, interpolation=PIL.Image.BICUBIC))
transforms_.append(transforms.CenterCrop(args.image_scale))
transforms_.append(transforms.ToTensor())
data_transforms = transforms.Compose(transforms_)
target_ = data_transforms(target).unsqueeze(0).to(args.device)
return target_, mask
def main(args):
loss_func = Loss(args)
inputs, mask = get_target(args)
utils.log_input(args.use_wandb, 0, inputs, args.output_dir)
renderer = load_renderer(args, inputs, mask)
optimizer = PainterOptimizer(args, renderer)
counter = 0
configs_to_save = {"loss_eval": []}
best_loss, best_fc_loss = 100, 100
best_iter, best_iter_fc = 0, 0
min_delta = 1e-5
terminate = False
renderer.set_random_noise(0)
img = renderer.init_image(stage=0)
optimizer.init_optimizers()
for epoch in tqdm(range(args.num_iter)):
renderer.set_random_noise(epoch)
if args.lr_scheduler:
optimizer.update_lr(counter)
start = time.time()
optimizer.zero_grad_()
sketches = renderer.get_image().to(args.device)
losses_dict = loss_func(sketches, inputs.detach(
), renderer.get_color_parameters(), renderer, counter, optimizer)
loss = sum(list(losses_dict.values()))
loss.backward()
optimizer.step_()
if epoch % args.save_interval == 0:
utils.plot_batch(inputs, sketches, f"{args.output_dir}/jpg_logs", counter,
use_wandb=args.use_wandb, title=f"iter{epoch}.jpg")
renderer.save_svg(
f"{args.output_dir}/svg_logs", f"svg_iter{epoch}")
# if args.cog_display:
# yield Path(f"{args.output_dir}/svg_logs/svg_iter{epoch}.svg")
if epoch % args.eval_interval == 0:
with torch.no_grad():
losses_dict_eval = loss_func(sketches, inputs, renderer.get_color_parameters(
), renderer.get_points_parans(), counter, optimizer, mode="eval")
loss_eval = sum(list(losses_dict_eval.values()))
configs_to_save["loss_eval"].append(loss_eval.item())
for k in losses_dict_eval.keys():
if k not in configs_to_save.keys():
configs_to_save[k] = []
configs_to_save[k].append(losses_dict_eval[k].item())
if args.clip_fc_loss_weight:
if losses_dict_eval["fc"].item() < best_fc_loss:
best_fc_loss = losses_dict_eval["fc"].item(
) / args.clip_fc_loss_weight
best_iter_fc = epoch
# print(
# f"eval iter[{epoch}/{args.num_iter}] loss[{loss.item()}] time[{time.time() - start}]")
cur_delta = loss_eval.item() - best_loss
if abs(cur_delta) > min_delta:
if cur_delta < 0:
best_loss = loss_eval.item()
best_iter = epoch
terminate = False
utils.plot_batch(
inputs, sketches, args.output_dir, counter, use_wandb=args.use_wandb, title="best_iter.jpg")
renderer.save_svg(args.output_dir, "best_iter")
if args.use_wandb:
wandb.run.summary["best_loss"] = best_loss
wandb.run.summary["best_loss_fc"] = best_fc_loss
wandb_dict = {"delta": cur_delta,
"loss_eval": loss_eval.item()}
for k in losses_dict_eval.keys():
wandb_dict[k + "_eval"] = losses_dict_eval[k].item()
wandb.log(wandb_dict, step=counter)
if abs(cur_delta) <= min_delta:
if terminate:
break
terminate = True
if counter == 0 and args.attention_init:
utils.plot_atten(renderer.get_attn(), renderer.get_thresh(), inputs, renderer.get_inds(),
args.use_wandb, "{}/{}.jpg".format(
args.output_dir, "attention_map"),
args.saliency_model, args.display_logs)
if args.use_wandb:
wandb_dict = {"loss": loss.item(), "lr": optimizer.get_lr()}
for k in losses_dict.keys():
wandb_dict[k] = losses_dict[k].item()
wandb.log(wandb_dict, step=counter)
counter += 1
renderer.save_svg(args.output_dir, "final_svg")
path_svg = os.path.join(args.output_dir, "best_iter.svg")
utils.log_sketch_summary_final(
path_svg, args.use_wandb, args.device, best_iter, best_loss, "best total")
return configs_to_save
def read_svg(path_svg, multiply=False):
device = torch.device("cuda" if (
torch.cuda.is_available() and torch.cuda.device_count() > 0) else "cpu")
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(
path_svg)
if multiply:
canvas_width *= 2
canvas_height *= 2
for path in shapes:
path.points *= 2
path.stroke_width *= 2
_render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(
canvas_width, canvas_height, shapes, shape_groups)
img = _render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3,
device=device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
return img