-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsketch_utils.py
331 lines (285 loc) · 11.3 KB
/
sketch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import imageio
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pydiffvg
import skimage
import skimage.io
import torch
import wandb
import PIL
from PIL import Image
from torchvision import transforms
from torchvision.utils import make_grid
from skimage.transform import resize
import cv2
from U2Net_.model import U2NET
import torchvision.transforms as transforms
def imwrite(img, filename, gamma=2.2, normalize=False, use_wandb=False, wandb_name="", step=0, input_im=None):
directory = os.path.dirname(filename)
if directory != '' and not os.path.exists(directory):
os.makedirs(directory)
if not isinstance(img, np.ndarray):
img = img.data.numpy()
if normalize:
img_rng = np.max(img) - np.min(img)
if img_rng > 0:
img = (img - np.min(img)) / img_rng
img = np.clip(img, 0.0, 1.0)
if img.ndim == 2:
# repeat along the third dimension
img = np.expand_dims(img, 2)
img[:, :, :3] = np.power(img[:, :, :3], 1.0/gamma)
img = (img * 255).astype(np.uint8)
skimage.io.imsave(filename, img, check_contrast=False)
images = [wandb.Image(Image.fromarray(img), caption="output")]
if input_im is not None and step == 0:
images.append(wandb.Image(input_im, caption="input"))
if use_wandb:
wandb.log({wandb_name + "_": images}, step=step)
def plot_batch(inputs, outputs, output_dir, step, use_wandb, title):
plt.figure()
plt.subplot(2, 1, 1)
grid = make_grid(inputs.clone().detach(), normalize=True, pad_value=2)
npgrid = grid.cpu().numpy()
plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')
plt.axis("off")
plt.title("inputs")
plt.subplot(2, 1, 2)
grid = make_grid(outputs, normalize=False, pad_value=2)
npgrid = grid.detach().cpu().numpy()
plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')
plt.axis("off")
plt.title("outputs")
plt.tight_layout()
if use_wandb:
wandb.log({"output": wandb.Image(plt)}, step=step)
plt.savefig("{}/{}".format(output_dir, title))
plt.close()
def log_input(use_wandb, epoch, inputs, output_dir):
grid = make_grid(inputs.clone().detach(), normalize=True, pad_value=2)
npgrid = grid.cpu().numpy()
plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')
plt.axis("off")
plt.tight_layout()
if use_wandb:
wandb.log({"input": wandb.Image(plt)}, step=epoch)
plt.close()
input_ = inputs[0].cpu().clone().detach().permute(1, 2, 0).numpy()
input_ = (input_ - input_.min()) / (input_.max() - input_.min())
input_ = (input_ * 255).astype(np.uint8)
imageio.imwrite("{}/{}.png".format(output_dir, "input"), input_)
def log_sketch_summary_final(path_svg, use_wandb, device, epoch, loss, title):
canvas_width, canvas_height, shapes, shape_groups = load_svg(path_svg)
_render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(
canvas_width, canvas_height, shapes, shape_groups)
img = _render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3,
device=device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
plt.imshow(img.cpu().numpy())
plt.axis("off")
plt.title(f"{title} best res [{epoch}] [{loss}.]")
if use_wandb:
wandb.log({title: wandb.Image(plt)})
plt.close()
def log_sketch_summary(sketch, title, use_wandb):
plt.figure()
grid = make_grid(sketch.clone().detach(), normalize=True, pad_value=2)
npgrid = grid.cpu().numpy()
plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')
plt.axis("off")
plt.title(title)
plt.tight_layout()
if use_wandb:
wandb.run.summary["best_loss_im"] = wandb.Image(plt)
plt.close()
def load_svg(path_svg):
svg = os.path.join(path_svg)
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(
svg)
return canvas_width, canvas_height, shapes, shape_groups
def read_svg(path_svg, device, multiply=False):
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(
path_svg)
if multiply:
canvas_width *= 2
canvas_height *= 2
for path in shapes:
path.points *= 2
path.stroke_width *= 2
_render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(
canvas_width, canvas_height, shapes, shape_groups)
img = _render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3,
device=device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
return img
def plot_attn_dino(attn, threshold_map, inputs, inds, use_wandb, output_path):
# currently supports one image (and not a batch)
plt.figure(figsize=(10, 5))
plt.subplot(2, attn.shape[0] + 2, 1)
main_im = make_grid(inputs, normalize=True, pad_value=2)
main_im = np.transpose(main_im.cpu().numpy(), (1, 2, 0))
plt.imshow(main_im, interpolation='nearest')
plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
plt.title("input im")
plt.axis("off")
plt.subplot(2, attn.shape[0] + 2, 2)
plt.imshow(attn.sum(0).numpy(), interpolation='nearest')
plt.title("atn map sum")
plt.axis("off")
plt.subplot(2, attn.shape[0] + 2, attn.shape[0] + 3)
plt.imshow(threshold_map[-1].numpy(), interpolation='nearest')
plt.title("prob sum")
plt.axis("off")
plt.subplot(2, attn.shape[0] + 2, attn.shape[0] + 4)
plt.imshow(threshold_map[:-1].sum(0).numpy(), interpolation='nearest')
plt.title("thresh sum")
plt.axis("off")
for i in range(attn.shape[0]):
plt.subplot(2, attn.shape[0] + 2, i + 3)
plt.imshow(attn[i].numpy())
plt.axis("off")
plt.subplot(2, attn.shape[0] + 2, attn.shape[0] + 1 + i + 4)
plt.imshow(threshold_map[i].numpy())
plt.axis("off")
plt.tight_layout()
if use_wandb:
wandb.log({"attention_map": wandb.Image(plt)})
plt.savefig(output_path)
plt.close()
def plot_attn_clip(attn, threshold_map, inputs, inds, use_wandb, output_path, display_logs):
# currently supports one image (and not a batch)
plt.figure(figsize=(10, 5))
plt.subplot(1, 3, 1)
main_im = make_grid(inputs, normalize=True, pad_value=2)
main_im = np.transpose(main_im.cpu().numpy(), (1, 2, 0))
plt.imshow(main_im, interpolation='nearest')
plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
plt.title("input im")
plt.axis("off")
plt.subplot(1, 3, 2)
plt.imshow(attn, interpolation='nearest', vmin=0, vmax=1)
plt.title("atn map")
plt.axis("off")
plt.subplot(1, 3, 3)
threshold_map_ = (threshold_map - threshold_map.min()) / \
(threshold_map.max() - threshold_map.min())
plt.imshow(threshold_map_, interpolation='nearest', vmin=0, vmax=1)
plt.title("prob softmax")
plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
plt.axis("off")
plt.tight_layout()
if use_wandb:
wandb.log({"attention_map": wandb.Image(plt)})
plt.savefig(output_path)
plt.close()
def plot_atten(attn, threshold_map, inputs, inds, use_wandb, output_path, saliency_model, display_logs):
if saliency_model == "dino":
plot_attn_dino(attn, threshold_map, inputs,
inds, use_wandb, output_path)
elif saliency_model == "clip":
plot_attn_clip(attn, threshold_map, inputs, inds,
use_wandb, output_path, display_logs)
def fix_image_scale(im):
im_np = np.array(im) / 255
height, width = im_np.shape[0], im_np.shape[1]
max_len = max(height, width) + 20
new_background = np.ones((max_len, max_len, 3))
y, x = max_len // 2 - height // 2, max_len // 2 - width // 2
new_background[y: y + height, x: x + width] = im_np
new_background = (new_background / new_background.max()
* 255).astype(np.uint8)
new_im = Image.fromarray(new_background)
return new_im
def get_mask_u2net(args, pil_im):
w, h = pil_im.size[0], pil_im.size[1]
im_size = min(w, h)
data_transforms = transforms.Compose([
transforms.Resize(min(320, im_size), interpolation=PIL.Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(
0.26862954, 0.26130258, 0.27577711)),
])
input_im_trans = data_transforms(pil_im).unsqueeze(0).to(args.device)
model_dir = os.path.join("./U2Net_/saved_models/u2net.pth")
net = U2NET(3, 1)
if torch.cuda.is_available() and args.use_gpu:
net.load_state_dict(torch.load(model_dir))
net.to(args.device)
else:
net.load_state_dict(torch.load(model_dir, map_location='cpu'))
net.eval()
with torch.no_grad():
d1, d2, d3, d4, d5, d6, d7 = net(input_im_trans.detach())
pred = d1[:, 0, :, :]
print(pred.shape)
pred = (pred - pred.min()) / (pred.max() - pred.min())
predict = pred
eps = 0.5
predict[predict < eps] = 0
predict[predict >= eps] = 1
mask = torch.cat([predict, predict, predict], axis=0).permute(1, 2, 0)
mask = mask.cpu().numpy()
mask = resize(mask, (h, w), anti_aliasing=False)
mask[mask < eps] = 0
mask[mask >= eps] = 1
# predict_np = predict.clone().cpu().data.numpy()
im = Image.fromarray((mask[:, :, 0]*255).astype(np.uint8)).convert('RGB')
im.save(f"{args.output_dir}/mask.png")
im_np = np.array(pil_im)
im_np = im_np / im_np.max()
im_np = mask * im_np
im_np[mask == 0] = 1
im_final = (im_np / im_np.max() * 255).astype(np.uint8)
im_final = Image.fromarray(im_final)
return im_final, predict, mask
def get_mask_inspyrenet(args, pil_im, fps):
w, h = pil_im.size[0], pil_im.size[1]
mask_video_path = args.target.replace("target_images", "InSPyReNet/results")
video = cv2.VideoCapture(mask_video_path)
video.set(cv2.CAP_PROP_POS_FRAMES, fps)
ret, frame = video.read()
video.release()
frame = torch.tensor(frame).to(torch.float)
gray_image = frame.permute(2, 0, 1)
gray_image = gray_image.mean(0, keepdim=True)
pred = gray_image
pred = (pred - pred.min()) / (pred.max() - pred.min())
predict = pred
eps = 0.5
predict[predict < eps] = 0
predict[predict >= eps] = 1
mask = torch.cat([predict, predict, predict], axis=0).permute(1, 2, 0)
mask = mask.cpu().numpy()
mask = resize(mask, (h, w), anti_aliasing=False)
mask[mask < eps] = 0
mask[mask >= eps] = 1
# predict_np = predict.clone().cpu().data.numpy()
im = Image.fromarray((mask[:, :, 0]*255).astype(np.uint8)).convert('RGB')
im.save(f"{args.output_dir}/mask.png")
im_np = np.array(pil_im)
im_np = im_np / im_np.max()
im_np = mask * im_np
im_np[mask == 0] = 1
im_final = (im_np / im_np.max() * 255).astype(np.uint8)
im_final = Image.fromarray(im_final)
return im_final, predict, mask