-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmnist_save.py
85 lines (68 loc) · 3.32 KB
/
mnist_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python2.7
"""Train and export a simple Softmax Regression TensorFlow model.
The model is from the TensorFlow "MNIST For ML Beginner" tutorial. This program
simply follows all its training instructions, and save its checkpoints.
Usage: mnist_save.py [--training_iteration=x] [--work_dir=dataset_dir] [--log_dir=checkpoint_dir]
"""
import os
import sys
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data as mnist_input_data
tf.app.flags.DEFINE_integer('training_iteration', 1000,
'number of training iterations.')
tf.app.flags.DEFINE_string('data_dir', '/tmp', 'Mnist dataset directory.')
tf.app.flags.DEFINE_string('log_dir', '/tmp/mnist_log', 'checkpoint and log directory.')
FLAGS = tf.app.flags.FLAGS
def main(_):
if len(sys.argv) == 1:
print('Usage: mnist_export.py [--training_iteration=x] '
'[--data_dir=dataset_dir] [--log_dir=checkpoint_dir]')
if FLAGS.training_iteration <= 0:
print 'Please specify a positive value for training iteration.'
sys.exit(-1)
# Train model
print 'Training model...'
mnist = mnist_input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# sess = tf.InteractiveSession()
with tf.Session() as sess:
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32),}
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.initialize_all_variables())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y), name='corss_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy, name='train_step')
values, indices = tf.nn.top_k(y, 10)
prediction_classes = tf.contrib.lookup.index_to_string(
tf.to_int64(indices), mapping=tf.constant([str(i) for i in xrange(10)]))
tf.add_to_collection('values', values)
tf.add_to_collection('prediction_classes', prediction_classes)
summary_op = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
for step in range(FLAGS.training_iteration):
batch = mnist.train.next_batch(50)
_, summary = sess.run([train_step, summary_op], feed_dict={x: batch[0], y_: batch[1]})
train_writer.add_summary(summary, step)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print 'training accuracy %g' % sess.run(
accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels})
print 'Done training!'
train_writer.close()
checkpoint_dir = FLAGS.log_dir
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver()
saver.save(sess, checkpoint_dir + "/ckpt")
print 'Done saving!'
if __name__ == '__main__':
tf.app.run()