-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstitching.cpp
557 lines (470 loc) · 17.5 KB
/
stitching.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
#ifndef _APP_H
#define _APP_H
#include <iostream>
#include <fstream>
#include <string>
#include "opencv2/opencv_modules.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
#include "conf.cpp"
#include "Logger.h"
#endif
/**
* 全局变量
*/
Logger Log;
int num_images;
double work_scale = 1;
double seam_scale = 1;
double compose_scale = 1;
double seam_work_aspect = 1;
bool is_work_scale_set = false;
bool is_seam_scale_set = false;
bool is_compose_scale_set = false;
Mat full_img, img;
vector<Mat> images;
vector<Size> full_img_sizes;
vector<int> indices;
vector<CameraParams> cameras;
float warped_image_scale;
vector<Mat> masks;
vector<Size> sizes;
vector<Point> corners;
vector<Mat> masks_warped;
vector<Mat> images_warped;
vector<Mat> images_warped_f;
Ptr<RotationWarper> warper;
Ptr<WarperCreator> warper_creator;
char* tmpUsedTime;
using namespace std;
using namespace cv;
using namespace cv::detail;
using namespace conf;
/**
* @brief 特征提取
* @return
*/
vector<ImageFeatures> extractFeature()
{
Log.info("Extract Feature Start..");
int64 start = getTickCount();
Ptr<FeaturesFinder> finder;
if (features_type == "surf")
{
#if defined(HAVE_OPENCV_NONFREE) && defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
finder = new SurfFeaturesFinderGpu();
else
#endif
finder = new SurfFeaturesFinder();
}
vector<ImageFeatures> features(num_images);
vector<Mat> _images(num_images);
images.assign(_images.begin(), _images.end());
vector<Size> _full_img_sizes(num_images);
full_img_sizes.assign(_full_img_sizes.begin(), _full_img_sizes.end());
for (int i = 0; i < num_images; ++i)
{
full_img = imread(img_names[i]);
full_img_sizes[i] = full_img.size();
if (full_img.empty())
{
Log.error("Open image failed" + img_names[i]);
exit;
}
if (work_megapix < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale, work_scale);
}
if (!is_seam_scale_set)
{
seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale;
is_seam_scale_set = true;
}
(*finder)(img, features[i]);
features[i].img_idx = i;
resize(full_img, img, Size(), seam_scale, seam_scale);
images[i] = img.clone();
}
finder->collectGarbage();
full_img.release();
img.release();
Log.info("Extract Feature End..");
sprintf(tmpUsedTime, "%f", (getTickCount() - start) / getTickFrequency());
Log.info("Used Time:" + (string)tmpUsedTime + " sec");
return features;
}
/**
* @brief 特征匹配
* @param features
* @return
*/
vector<MatchesInfo> matchFeature (vector<ImageFeatures> features)
{
Log.info("Feature Matching Start");
int64 start = getTickCount();
vector<MatchesInfo> pairwise_matches;
BestOf2NearestMatcher matcher(try_gpu, match_conf);
matcher(features, pairwise_matches);
matcher.collectGarbage();
Log.info("Feature Matching End");
sprintf(tmpUsedTime, "%f", (getTickCount() - start) / getTickFrequency());
Log.info("Used Time: " + (string)tmpUsedTime + " sec");
return pairwise_matches;
}
/**
* @brief 还原图像序列
* @param pairwise_matches
*/
void recoverOrder(vector<ImageFeatures> features, vector<MatchesInfo> pairwise_matches)
{
indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
vector<Mat> img_subset;
vector<string> img_names_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
img_names_subset.push_back(img_names[indices[i]]);
img_subset.push_back(images[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
}
/**
* @brief 参数估计
*/
void estimate(vector<ImageFeatures> features, vector<MatchesInfo> pairwise_matches)
{
HomographyBasedEstimator estimator;
vector<CameraParams> cameras;
estimator(features, pairwise_matches, cameras);
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R.convertTo(R, CV_32F);
cameras[i].R = R;
}
Ptr<detail::BundleAdjusterBase> adjuster;
if (ba_cost_func == "reproj") adjuster = new detail::BundleAdjusterReproj();
else if (ba_cost_func == "ray") adjuster = new detail::BundleAdjusterRay();
else
{
Log.error("Unknown bundle adjustment cost function: '" + ba_cost_func + "'.\n");
exit;
}
adjuster->setConfThresh(conf_thresh);
Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1;
if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1;
if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1;
if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1;
if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1;
adjuster->setRefinementMask(refine_mask);
(*adjuster)(features, pairwise_matches, cameras);
// 焦距估计
vector<double> focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
focals.push_back(cameras[i].focal);
}
sort(focals.begin(), focals.end());
if (focals.size() % 2 == 1)
{
warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
} else {
warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
}
// 波形校正
if (do_wave_correct)
{
vector<Mat> rmats;
for (size_t i = 0; i < cameras.size(); ++i)
{
rmats.push_back(cameras[i].R);
}
waveCorrect(rmats, wave_correct);
for (size_t i = 0; i < cameras.size(); ++i)
{
cameras[i].R = rmats[i];
}
}
}
/**
* @brief wrap
*/
void wrap()
{
Log.info("Warping images (auxiliary)");
int64 start = getTickCount();
vector<Point> _corners(num_images);
corners.assign(_corners.begin(), _corners.end());
vector<Mat> _masks_warped(num_images);
masks_warped.assign(_masks_warped.begin(), _masks_warped.end());
vector<Mat> _images_warped(num_images);
images_warped.assign(_images_warped.begin(), _images_warped.end());
vector<Size> _sizes(num_images);
sizes.assign(_sizes.begin(), _sizes.end());
vector<Mat> _masks(num_images);
masks.assign(_masks.begin(), _masks.end());
// 准备拼接 Mask
for (int i = 0; i < num_images; ++i)
{
masks[i].create(images[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// 创建拼接面
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
{
if (warp_type == "plane") warper_creator = new cv::PlaneWarperGpu();
else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarperGpu();
else if (warp_type == "spherical") warper_creator = new cv::SphericalWarperGpu();
}
else
#endif
{
if (warp_type == "plane") warper_creator = new cv::PlaneWarper();
else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarper();
else if (warp_type == "spherical") warper_creator = new cv::SphericalWarper();
else if (warp_type == "fisheye") warper_creator = new cv::FisheyeWarper();
else if (warp_type == "stereographic") warper_creator = new cv::StereographicWarper();
else if (warp_type == "compressedPlaneA2B1") warper_creator = new cv::CompressedRectilinearWarper(2, 1);
else if (warp_type == "compressedPlaneA1.5B1") warper_creator = new cv::CompressedRectilinearWarper(1.5, 1);
else if (warp_type == "compressedPlanePortraitA2B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(2, 1);
else if (warp_type == "compressedPlanePortraitA1.5B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(1.5, 1);
else if (warp_type == "paniniA2B1") warper_creator = new cv::PaniniWarper(2, 1);
else if (warp_type == "paniniA1.5B1") warper_creator = new cv::PaniniWarper(1.5, 1);
else if (warp_type == "paniniPortraitA2B1") warper_creator = new cv::PaniniPortraitWarper(2, 1);
else if (warp_type == "paniniPortraitA1.5B1") warper_creator = new cv::PaniniPortraitWarper(1.5, 1);
else if (warp_type == "mercator") warper_creator = new cv::MercatorWarper();
else if (warp_type == "transverseMercator") warper_creator = new cv::TransverseMercatorWarper();
}
if (warper_creator.empty())
{
Log.error("Can't create the following warper '" + warp_type);
exit;
}
warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
for (int i = 0; i < num_images; ++i)
{
Mat_<float> K;
cameras[i].K().convertTo(K, CV_32F);
float swa = (float)seam_work_aspect;
K(0,0) *= swa; K(0,2) *= swa;
K(1,1) *= swa; K(1,2) *= swa;
corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
sizes[i] = images_warped[i].size();
warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
}
vector<Mat> _images_warped_f(num_images);
images_warped_f.assign(_images_warped_f.begin(), _images_warped_f.end());
for (int i = 0; i < num_images; ++i)
{
images_warped[i].convertTo(images_warped_f[i], CV_32F);
}
sprintf(tmpUsedTime, "%f", (getTickCount() - start) / getTickFrequency());
Log.info("Warping images, time: " + (string)tmpUsedTime + " sec");
}
int start(int argc, char* argv[])
{
// 开始时间
int64 app_start_time = getTickCount();
int argsAvilable = parseCmdArgs(argc, argv);
// 检查参数解析是否正确
if (argsAvilable) {
Log.error("Parse Command Arguments Filed.");
return argsAvilable;
}
// 检查图片数量是否 > 1
num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
Log.error("Need more images");
return -1;
}
// 特征提取
vector<ImageFeatures> features = extractFeature();
// 特征匹配
vector<MatchesInfo> pairwise_matches = matchFeature(features);
// 是否保存匹配结果
if (save_graph)
{
Log.info("Saving Matches Start");
ofstream f(save_graph_to.c_str());
f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
Log.info("Saving Matches End");
}
recoverOrder(features, pairwise_matches);
// 序列中图像数量是否大于2
num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
Log.error("Need more images");
return -1;
}
// 求单应性矩阵:匹配模型RANSAC提纯 / 参数估计 / 建立变换模型
estimate(features, pairwise_matches);
// 图像拼接
wrap();
// 缝隙估计
Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
compensator->feed(corners, images_warped, masks_warped);
Ptr<SeamFinder> seam_finder;
if (seam_find_type == "no")
seam_finder = new detail::NoSeamFinder();
else if (seam_find_type == "voronoi")
seam_finder = new detail::VoronoiSeamFinder();
else if (seam_find_type == "gc_color")
{
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
}
else if (seam_find_type == "gc_colorgrad")
{
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR_GRAD);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
}
else if (seam_find_type == "dp_color")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR);
else if (seam_find_type == "dp_colorgrad")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR_GRAD);
if (seam_finder.empty())
{
Log.error("Can't create the following seam finder '" + seam_find_type);
return 1;
}
seam_finder->find(images_warped_f, corners, masks_warped);
// Release unused memory
images.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
// 融合
Log.info("Compositing");
int64 start = getTickCount();
Mat img_warped, img_warped_s;
Mat dilated_mask, seam_mask, mask, mask_warped;
Ptr<Blender> blender;
//double compose_seam_aspect = 1;
double compose_work_aspect = 1;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
Log.info("Compositing image #" + indices[img_idx]+1);
full_img = imread(img_names[img_idx]);
if (!is_compose_scale_set)
{
if (compose_megapix > 0)
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// Compute relative scales
compose_work_aspect = compose_scale / work_scale;
warped_image_scale *= static_cast<float>(compose_work_aspect);
warper = warper_creator->create(warped_image_scale);
// Update corners and sizes
for (int i = 0; i < num_images; ++i)
{
// Update intrinsics
cameras[i].focal *= compose_work_aspect;
cameras[i].ppx *= compose_work_aspect;
cameras[i].ppy *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (std::abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
}
Mat K;
cameras[i].K().convertTo(K, CV_32F);
Rect roi = warper->warpRoi(sz, K, cameras[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (abs(compose_scale - 1) > 1e-1)
{
resize(full_img, img, Size(), compose_scale, compose_scale);
} else {
img = full_img;
}
full_img.release();
Size img_size = img.size();
Mat K;
cameras[img_idx].K().convertTo(K, CV_32F);
// Warp the current image
warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
// Warp the current image mask
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
// Compensate exposure
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size());
mask_warped = seam_mask & mask_warped;
if (blender.empty())
{
blender = Blender::createDefault(blend_type, try_gpu);
Size dst_sz = resultRoi(corners, sizes).size();
float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_gpu);
else if (blend_type == Blender::MULTI_BAND)
{
MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
mb->setNumBands(static_cast<int>(ceil(log(blend_width)/log(2.)) - 1.));
}
else if (blend_type == Blender::FEATHER)
{
FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
fb->setSharpness(1.f/blend_width);
}
blender->prepare(corners, sizes);
}
// Blend the current image
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
}
Mat result, result_mask;
blender->blend(result, result_mask);
sprintf(tmpUsedTime, "%f", (getTickCount() - start) / getTickFrequency());
Log.info("Compositing, used time: " + (string)tmpUsedTime + " sec");
imwrite(result_name, result);
sprintf(tmpUsedTime, "%f", (getTickCount() - start) / getTickFrequency());
Log.info("Finished, used time: " + (string)tmpUsedTime + " sec");
return 0;
}