Skip to content

Latest commit

 

History

History
 
 

espnet-oneseg

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

reazonspeech.espnet.oneseg

This supplies a set of functions to analyze Japanese one-segment digital television streams (so-called oneseg).

This module requires ESPnet and ffmpeg.

Install

$ git clone https://github.com/reazon-research/reazonspeech
$ pip install reazonspeech/pkg/espnet-oneseg

Usage

Extract captions

Here is the most basic usage of this module:

from reazonspeech.espnet.oneseg import get_captions

captions = rs.get_captions("test.m2ts")

Given recorded stream data, get_captions() extracts captions from the stream.

Caption(start_seconds=21.3, end_seconds=25.1, text='こんにちは。正午のニュースです。')
Caption(start_seconds=30.3, end_seconds=34.2, text='本日十時に北海道に')
Caption(start_seconds=34.2, end_seconds=35.1, text='陸上機が到着しました。')

The start_seconds/end_seconds fields represent the display timings of the caption.

Format captions

Often a caption packet only contains a part of the original utterance.

You can use build_sentences() to merge/split captions according to the sentence boundaries.

from reazonspeech.espnet.oneseg import build_sentences

captions = build_sentences(captions)

Here are example outputs:

Caption(start_seconds=21.3, end_seconds=25.1, text='こんにちは。')
Caption(start_seconds=21.3, end_seconds=25.1, text='正午のニュースです。')
Caption(start_seconds=30.3, end_seconds=35.1, text='本日十時に北海道に陸上機が到着しました。')

Create corpus

Install ffmpeg and set up a ReazonSpeech model:

$ sudo apt install ffmpeg git-lfs
$ git clone https://huggingface.co/reazon-research/reazonspeech-espnet-v2
$ ln -s reazonspeech-espnet-v2/exp

Use the following code to generate a corpus:

from espnet2.bin.asr_align import CTCSegmentation
from reazonspeech.espnet.oneseg import get_utterances, save_as_zip

# Load audio and ASR model
ctc_segmentation = CTCSegmentation(
    asr_train_config="exp/asr_train_asr_conformer_raw_jp_char/config.yaml",
    asr_model_file="exp/asr_train_asr_conformer_raw_jp_char/valid.acc.ave_10best.pth",
    kaldi_style_text=False,
    fs=16000,
)

# Extract audio and transcriptions
utt = get_utterances("test.m2ts", ctc_segmentation)
save_as_zip(utt, path="corpus.zip")