Skip to content

Latest commit

 

History

History
76 lines (62 loc) · 3.32 KB

README.md

File metadata and controls

76 lines (62 loc) · 3.32 KB

GRIP

This repository is the code of GRIP++: Enhanced Graph-based Interaction-aware Trajectory Prediction for Autonomous Driving on the Baidu Apollo Trajectory dataset. GRIP++ is an enhanced version of our GRIP (GRIP: Graph-based Interaction-aware Trajectory Prediction).


License

This code is shared only for research purposes, and this cannot be used for any commercial purposes.


Training

  1. Modify "data_root" in data_process.py and then run the script to preprocess the data.
$ python data_process.py
  1. Train the model. We trained the model on a single Nvidia Titan Xp GPU. If your GPU has the same precision, you should get the exact same results. The "training_log.txt" is my training log. If you download the code and run it directly, you should see similar outputs.
$ python main.py

# The following are the first 10 training iterations:
#######################################Train
# |2019-09-20 16:50:43.146035|     Epoch:   0/ 500|	Iteration:    0|	Loss:2.69767785|lr: 0.001|
# |2019-09-20 16:50:43.247776|     Epoch:   0/ 500|	Iteration:    0|	Loss:1.39082634|lr: 0.001|
# |2019-09-20 16:50:43.327926|     Epoch:   0/ 500|	Iteration:    0|	Loss:1.42024708|lr: 0.001|
# |2019-09-20 16:50:43.394658|     Epoch:   0/ 500|	Iteration:    0|	Loss:1.32363927|lr: 0.001|
# |2019-09-20 16:50:43.454833|     Epoch:   0/ 500|	Iteration:    0|	Loss:1.15358388|lr: 0.001|
# |2019-09-20 16:50:43.515517|     Epoch:   0/ 500|	Iteration:    0|	Loss:1.15672326|lr: 0.001|
# |2019-09-20 16:50:43.575027|     Epoch:   0/ 500|	Iteration:    0|	Loss:0.93675584|lr: 0.001|
# |2019-09-20 16:50:43.634769|     Epoch:   0/ 500|	Iteration:    0|	Loss:0.90181452|lr: 0.001|
# |2019-09-20 16:50:43.694374|     Epoch:   0/ 500|	Iteration:    0|	Loss:0.75979233|lr: 0.001|

Submission

Once you trained the model, you can test the trained models on the testing subset.

  • Our model predicts future locations for all observed objects simultaneously.
  • Using separate models for different types of objects should achieve better performance.
Method Epoch WSADE ADEv ADEp ADEb WSFDE FDEv FDEp FDEb
TrafficPredict 8.5881 7.9467 7.1811 12.8805 24.2262 12.7757 11.121 22.7912
GRIP Epoch16 1.2632 2.2511 0.718 1.8024 2.3713 4.0863 1.3838 3.4155
GRIP Epoch18 1.2648 2.2515 0.7142 1.8193 2.3677 4.0863 1.3732 3.4274
GRIP Epoch20 1.2721 2.24 0.717 1.8558 2.3921 4.0762 1.3791 3.5318
GRIP Combine 1.2588 2.2400 0.7142 1.8024 2.3631 4.0762 1.3732 3.4155

We use the following way to combine multiple results.

  • epoch20 -> 1, 2 (car)
  • epoch18 -> 3 (pedestrian)
  • epoch16 -> 4 (bike)

Citation

Please cite our papers if you used our code. Thanks.

@inproceedings{2019itsc_grip,
 author = {Li, Xin and Ying, Xiaowen and Chuah, Mooi Choo},
 booktitle = {2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC)},
 organization = {IEEE},
 title = {GRIP: Graph-based Interaction-aware Trajectory Prediction},
 year = {2019}
}

@article{li2020gripplus,
  title={GRIP++: Enhanced Graph-based Interaction-aware Trajectory Prediction for Autonomous Driving},
  author={Li, Xin and Ying, Xiaowen and Chuah, Mooi Choo},
  journal={arXiv preprint arXiv:1907.07792},
  year={2020}
}